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Abstract

Thambidurai and Park [19] introduced a “hybrid”
fault model that includes the arbitrary (or Byzantine)
fault mode, together with two simpler and common
fault modes. They also introduced a modified version
of the “Oral Messages” algorithm for Interactive Con-
sistency (Byzantine Agreement) that provides the best
of both worlds by tolerating more simple faults than the
original, while retaining its ability to withstand arbi-
trary faults. Unfortunately, despite a published proof
of correctness, their algorithm is flawed and fails in
quite simple circumstances.

We detected this flaw while undertaking a formal
verification of the algorithm using our PVS mechanical
verification system [13]. Repairing this algorithm is
not easy. We developed an incorrect version ourselves,
and even “proved” it correct using ordinary, informal
mathematics.

The discipline of mechanically-checked formal ver-
ification eventually enabled us to develop a correct al-
gorithm for Interactive Consistency under the hybrid
fault model. In the paper, we present this algorithm,
discuss its subtle points, and describe its formal speci-
fication and verification. We argue that formal verifi-
cation systems such as PVS are now sufficiently effec-
tive that their application to fault-tolerance algorithms
should be considered routine.
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1 Introduction

Fault-tolerant systems are designed and evaluated
against explicit assumptions regarding the kinds and
numbers of faults they are to tolerate. “Fault models,”
which enumerate the assumed behaviors of faulty com-
ponents, range from those that identify many highly
specific modes of failure, to those that comprise just
a few broad classes. The advantage of a very detailed
fault model is that the mechanisms of fault tolerance
can be finely tuned to deliver maximum resilience from
a given level of redundancy; the corresponding dis-
advantages are that an overlooked fault mode may
cause unexpected failure in operation, and the need
to counter many fault modes can lead to a complex
design—which may itself be a source of faults.

In contrast to designs that consider many fault
modes are those that make no assumptions whatso-
ever about the behavior of faulty components. The
advantage of such “Byzantine” fault-tolerant designs
is that they cannot be defeated by unexpected failure
modes; their disadvantage is that all faults are treated
as “worst case,” so that large levels of redundancy
tolerate relatively few faults. For example, a conven-
tional Byzantine fault-tolerant architecture requires
3m + 1 channels to tolerate m simultaneous faults of
any kind within some of its functions [1, 14]. Thus, a
4-plex is needed in order to withstand a single fault,1

and 5- and 6-plexes provide no additional benefit (in
fact the additional channels will increase the fault ar-
rival rate and thereby lower overall reliability).2 This
seems counterintuitive, since it is clear that suitably
organized 5- and 6-plexes can withstand more faults,
of some kinds, than a 4-plex.

1Single fault tolerance can also be provided by architectures
such as Draper Laboratory’s FTP, which uses only three full
processors plus three simpler “interstages” [4].

2If the system can be reconfigured following a fault, then a
fifth and sixth channel can increase reliability if used as standby
spares—but they serve no purpose as live channels.



These observations motivate the study of fault-
tolerant architectures and algorithms with respect to
“hybrid” fault models that include the Byzantine, or
“arbitrary,” fault mode, together with a limited num-
ber of additional fault modes. Inclusion of the ar-
bitrary fault mode (i.e., faults whose behaviors are
entirely unconstrained) eliminates the fear that some
unforeseen mode may defeat the fault-tolerance mech-
anisms provided, while inclusion of other fault modes
allows greater resilience to be achieved for faults of
these kinds than with a classical Byzantine fault-
tolerant architecture.

Our interest is architectures for digital flight-
control systems, where fault-masking behavior is re-
quired to ultra-high levels of reliability. This means
that not only must stochastic modeling show that ad-
equate numbers and kinds of faults are masked to sat-
isfy the mission requirements, but that convincing an-
alytical evidence must attest to the soundness of the
overall fault-tolerant architecture and to the correct-
ness of the design and implementation of its mech-
anisms of fault tolerance.3 Such a rational design
for a “reliable computing platform” suitable for ultra-
critical applications was established in the late 1970s
and early 1980s by the SIFT architecture [21]: the
system workload is executed by several independent
channels operating in approximate synchrony, and re-
sults are subjected to majority voting. If all channels
execute identical workloads on identical data, then
majority voting is sufficient to mask arbitrary chan-
nel failures. However, majority voting is not sufficient
to mask arbitrary failures in the distribution of single-
source data (such as sensor samples) [14], nor in clock
synchronization [6].

In this paper, we focus on algorithms for reliably
distributing single-source data to multiple channels
in the presence of faults. This problem, known as
“Interactive Consistency” (although sometimes called
“source congruence”), was first posed and solved for
the case where faulty channels can exhibit arbitrary
behavior by Pease, Shostak, and Lamport [14] in
1980.4 Interactive Consistency is a symmetric prob-
lem: it is assumed that each channel has a “private
value” (e.g., a set of sensor samples) and the goal is
to ensure that every nonfaulty channel achieves an
accurate record of the private value of every other
nonfaulty channel. In 1982, Lamport, Shostak, and

3There are examples where unanticipated behaviors of the
mechanisms for fault tolerance became the primary source of
system failure [10].

4Davies and Wakerley had anticipated some of the issues a
few years earlier [2].

Pease [7] presented an asymmetric version of Inter-
active Consistency, which they called the “Byzantine
Generals Problem”; here, the goal is to communi-
cate a single value from a designated channel called
the “Commanding General” to all the other chan-
nels, which are known as “Lieutenant Generals.” The
problem of real practical interest is Interactive Con-
sistency, but the metaphor of the Byzantine Generals
has proved so memorable that this formulation is bet-
ter known; it can also be easier to describe algorithms
informally using the Byzantine Generals formulation,
although the balance of advantage can be reversed in
truly formal presentations [15]. An algorithm for the
Byzantine Generals problem can be converted to one
for Interactive Consistency by simply iterating it over
all channels (each channel in turn taking the role of
the Commander), so there is no disadvantage to con-
sidering the Byzantine Generals formulation. See [15]
for more extended discussion of this topic.

Lamport, Pease, and Shostak presented algorithms
for solving the Byzantine Generals problem. The prin-
cipal difficulty to be overcome in such algorithms is
possibly asymmetric behavior on the part of faulty
channels: such a channel may provide one value to
a second channel, but a different value to a third,
thereby making it difficult for the recipients to agree
on a common value. Byzantine Generals algorithms
overcome the possibility of faulty channels exhibiting
asymmetric behavior by using several rounds of mes-
sage exchange during which channel p tells channel q

what value it received from channel r and so on. The
precise form of the algorithm depends on assumptions
about what a faulty channel may do when relaying
such a message; under the “Oral Messages” assump-
tion, there is no guarantee that a faulty channel will
relay messages correctly. This corresponds to totally
arbitrary behavior by faulty channels: not only can a
faulty channel provide inconsistent data initially, but
it can also relay data inconsistently.5

Using m + 1 rounds of message exchanges, the
Oral Messages algorithm of Lamport, Shostak, and
Pease [7], which we denote OM(m), can withstand
up to m arbitrary faults, provided n, the number of
channels, satisfies n > 3m. The bound n > 3m is opti-
mal: Pease, Shostak, and Lamport proved that no al-
gorithm based on the Oral Messages assumptions can
withstand more arbitrary faults than this [14]. How-
ever, as we have already noted, OM(m) is not optimal
when other than arbitrary faults are considered: other

5Under the “signed messages” assumption (which can be sat-
isfied using digital signatures), an altered message can be de-
tected by the recipient.
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algorithms can withstand greater numbers of simpler
faults for a given number of channels than OM(m).

We are not the first to make these observations.
Thambidurai and Park [19] and Meyer and Prad-
han [11, 12] have considered Interactive Consistency
algorithms that resist multiple fault classes. Tham-
bidurai and Park’s “Unified” model divides faults into
three classes: nonmalicious (or benign), symmetric
malicious, and asymmetric malicious. A nonmalicious
fault is one that produces detectably missing values
(e.g., timing, omission, or crash faults), or that pro-
duces a “self-incriminating” value that all nonfaulty
recipients can detect as bad (e.g., it fails checksum or
format tests). A malicious fault is one that yields a
value that is not detectably bad (i.e., it is a wrong ,
rather than a missing or manifestly corrupted, value).
A symmetric malicious fault delivers the same wrong
value to every nonfaulty receiver; an asymmetric ma-
licious fault delivers (possibly) different wrong values
(or missing or detectably bad values) to different non-
faulty receivers. The classical arbitrary or Byzan-
tine fault is an asymmetric malicious fault in this
taxonomy.6

Thambidurai and Park present a variant on the
classical Oral Messages algorithm that retains the ef-
fectiveness of that algorithm with respect to arbitrary
faults, but that is also capable of withstanding more
faults of the other kinds considered.7 In a later paper,
Thambidurai, Park, and Trivedi [20] present reliabil-
ity analyses that show this increased fault-tolerance
indeed provides superior reliability under plausible as-
sumptions. McElvany-Hugue has also studied the re-
liability of related algorithms under this fault model,
reaching similar conclusions [5].

Unfortunately, Thambidurai and Park’s algorithm
(which they call Algorithm Z) has a serious flaw and
fails in quite simple circumstances. In this paper, we

6Thambidurai and Park state that “it is possible for a fault to
be symmetric or asymmetric and still be nonmalicious . . . our
unified model is capable of treating both cases uniformly. A
nonmalicious asymmetric fault is no worse than a symmetric
fault” [19, page 96]. This statement seems to indicate that an
asymmetric nonmalicious fault need not be detected by every re-
ceiver; this is not so, however, as scrutiny of their proof reveals.
The intended interpretation seems to be that an asymmetric
nonmalicious fault may result in different, but still manifestly
erroneous, values being received by different channels, whereas
all values must be the same in the symmetric case.

7Meyer and Pradhan [12] consider a fault model that, in
Thambidurai and Park’s taxonomy, comprises only asymmetric
malicious and benign faults. Their algorithm is derived from
the algorithm of [3] and, like the parent algorithm, is not par-
ticularly suitable for the cases of practical interest (i.e., m = 1,
or possibly m = 2, n less than 10).

describe the flaw, and explain how straightforward at-
tempts to repair it also fail. We then present a cor-
rect algorithm for the problem of Interactive Consis-
tency under a hybrid fault model and present a proof
of its correctness. Thambidurai and Park presented a
proof of correctness for their flawed algorithm, and we
have also developed some rather convincing “proofs”
ourselves for other incorrect algorithms for this prob-
lem. Accordingly, we have developed a mechanically
checked formal verification for our algorithm using the
PVS verification system [13]. We outline this for-
mal verification and show that it is not particularly
difficult. Because informal proofs seem unreliable in
this domain, and the consequences of failure could be
catastrophic, we argue that formal verification should
become routine.

2 Requirements, Assumptions, and

the Algorithms OM and Z

Although the problem of real practical interest is
Interactive Consistency, all the algorithms we consider
are presented here in their Byzantine Generals formu-
lation, since this appears simpler in informal presen-
tations. The relationship between Interactive Consis-
tency and the Byzantine Generals Problem is exam-
ined in [15].

2.1 Requirements

In the Byzantine Generals formulation of the prob-
lem, there are n participants, which we call “proces-
sors.” A distinguished processor, which we call the
transmitter , possesses a value to be communicated to
all the other processors, which we call the receivers .8

There are n processors in total, of which some (pos-
sibly including the transmitter) may be faulty. The
transmitter’s value is denoted v and the problem is
to devise an algorithm that will allow each receiver p

to compute an estimate νp of the transmitter’s value
satisfying the following conditions:

BG1: If receivers p and q are nonfaulty, then they
agree on the value ascribed to the transmitter—
that is, for all nonfaulty p and q, νp = νq.

BG2: If the transmitter is nonfaulty, then every non-
faulty receiver computes the correct value—that
is, for all nonfaulty p, νp = v.

8Lamport, Shostak, and Pease [7] speak of a “Commanding
General” and of “Lieutenant Generals” where we say transmit-
ter and receivers.
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Conditions BG1 and BG2 are sometimes known as
“Agreement” and “Validity,” respectively.

2.2 Assumptions

The principal difficulty that must be overcome by
a Byzantine Generals algorithm is that the transmit-
ter may send different values to different receivers,
thereby complicating satisfaction of condition BG1.
To overcome this, algorithms use several “rounds” of
message exchange during which processor p tells pro-
cessor q what value it received from processor r and
so on. Under the “Oral Messages” assumptions, the
difficulty is compounded because a faulty processor q

may “lie” to processor r about the value it received
from processor p. More precisely, the Oral Messages
assumptions are the following.

A1: Every message that is sent between nonfaulty
processors is correctly delivered.

A2: The receiver of a message knows who sent it.

A3: The absence of a message can be detected.

In the classical Byzantine Generals problem, there
are no constraints at all on the behavior of a faulty
processor.

2.3 Algorithm OM

Lamport, Shostak, and Pease’s Algorithm OM
solves the Byzantine Generals problem under the Oral
Messages assumption. The algorithm is parameterized
by m, the number of rounds of message exchanges per-
formed. OM(m) can withstand up to m faults, pro-
vided n > 3m, where n is the total number of proces-
sors. The algorithm is described recursively; the base
case is OM(0).

OM(0)

1. The transmitter sends its value to every
receiver.

2. Each receiver uses the value obtained
from the transmitter, or some arbitrary,
but fixed, value if nothing is received.

Now we can describe the general case.

OM(m), m > 0

1. The transmitter sends its value to every
receiver.

2. For each p, let vp be the value receiver
p obtains from the transmitter, or else
be some arbitrary, but fixed, value if it
obtains no value. Each receiver p acts as
the transmitter in Algorithm OM(m−1)
to communicate its value vp to each of
the n − 2 other receivers.

3. For each p, and each q 6= p, let vq be
the value receiver p obtained from re-
ceiver q in step (2) (using Algorithm
OM(m − 1)), or else some arbitrary,
but fixed, value if nothing was received.
Each receiver p calculates the majority
value among all values vq it receives,
and uses that as the transmitter’s value
(or some arbitrary, but fixed, value if no
absolute majority exists).

The correctness of this algorithm (that it achieves
BG1 and BG2 under certain assumptions) was proven
in [7, page 390] and mechanically checked in [1, 15].

2.4 Algorithm Z

Thambidurai and Park’s Algorithm Z is a modifi-
cation of OM intended to operate under their hybrid
fault model described earlier. The difference between
OM and Z is that the latter has a distinguished “er-
ror” value, E. Any processor that receives a missing
or manifestly bad value replaces that value by E and
uses E as the value that it passes on in the recursive
instances of the algorithm. The majority voting that
is required in OM, is replaced in Z by a majority vote
with all E values eliminated. Thambidurai and Park
claim that an m-round implementation of Algorithm
Z can withstand a + s + b simultaneous faults, where
a is the number of asymmetric malicious faults, s the
number of symmetric malicious faults, and b the num-
ber of nonmalicious faults, provided a ≤ m, and n, the
number of processors, satisfies n > 2a + 2s + b + m.
In the case of no symmetric malicious or nonmalicious
faults (i.e., Byzantine faults only), we have m = a and
s = b = 0, so that n > 3m and the algorithm provides
the same performance as the classical Oral Messages
algorithm.

We and our colleagues at SRI have undertaken me-
chanically checked formal verifications for a number of
fault-tolerant algorithms, including OM [15], and have
identified deficiencies in some of the previously pub-
lished analyses (though not in the algorithms—see, for
example [17,18]). Any changes to the established algo-
rithms for Interactive Consistency must be subjected
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to intense scrutiny, for errors in these algorithms are
single points of failure in any system that employs
them. Changes that widen the classification of faults
considered are likely to increase the case analysis, and
hence the complexity and potential fallibility of ar-
guments for the correctness of modified algorithms.
We therefore considered Thambidurai and Park’s Al-
gorithm Z an interesting candidate for formal verifica-
tion.

We began our attempt to formally verify Algorithm
Z by studying the proof of its correctness provided by
Thambidurai and Park [19, pages 96 and 97]. This
proof follows the outline of the standard proof for
OM [7, page 390] quite closely. However, we soon
found that Thambidurai and Park’s proof is simulta-
neously more complicated than necessary and flawed
in several details. The most serious fault is that their
Lemma 1 (all nonfaulty receivers get the correct value
of a nonfaulty transmitter) fails to consider the case
where the value sent by the transmitter is E. This can
arise in recursive instances of the algorithm when non-
faulty receivers are passing on the value received from
a faulty source. Further thought soon reveals that not
only is the proof flawed, but the algorithm is incor-
rect: even systems with large numbers of processors
may fail with only two faulty components.

The simplest counterexample comprises five pro-
cessors in which the transmitter has a nonmalicious
fault, one of the receivers has an asymmetric mali-
cious fault, and the algorithm is Z with one round (i.e.,
n = 5, a = 1, s = 0, b = 1, m = 1). All the nonfaulty
receivers note E as the value received from the trans-
mitter, and relay the value E to all the other receivers.
The faulty receiver sends a different (non-E) value to
each of the nonfaulty receivers. Each nonfaulty re-
ceiver then has three E values, and one non-E value;
because E values are discarded in the majority vote,
each nonfaulty receiver selects the value received from
the faulty receiver as the value sent by the transmit-
ter. Since these values are all different, the algorithm
has failed to achieve agreement among the nonfaulty
receivers. Observe that this scenario is independent of
the number of receivers (provided there are more than
three of them—two that should agree and one that is
faulty), so the problem is not due to an inadequate
level of redundancy.

3 The Algorithm OMH

In this section we introduce our new algorithm
OMH for interactive consistency under a hybrid fault

model. Before describing the algorithm, we present
the fault model.

3.1 Hybrid Fault Model

Our fault model is that of Thambidurai and Park,
but with the cases renamed—we find the anthropo-
morphism in terms such as “malicious faults” unhelp-
ful.

The fault modes we distinguish for processors
are arbitrary-faulty , symmetric-faulty , and manifest-
faulty (also called crash-faulty). (These correspond
to Thambidurai and Park’s asymmetric malicious,
symmetric malicious, and nonmalicious faults, respec-
tively.) Of course, we also need a class of good (also
called nonfaulty) processors. We specify these fault
modes semiformally as follows (the formal characteri-
zations are presented in the following section).

Memo: Is it?

When a transmitter sends its value v to the re-
ceivers, the value obtained by a nonfaulty receiver p

is:

• v, if the transmitter is nonfaulty

• E, if the transmitter is manifest-faulty9

• Unknown, if the transmitter is symmetric-faulty,
but all receivers obtain the same value,

• Completely unconstrained, if the transmitter is
arbitrary-faulty.

Note that it is not necessary to define the value
received by a faulty receiver, because such receivers
may send values completely unrelated to their inputs.
Also note that manifest faults must be symmetric. If
a processor were to “crash” during this protocol (or if
some of its outgoing links are broken, or if it is early
or late transmitting on some links), it would have to
be counted as arbitrary-faulty, since different good re-
ceivers may obtain different values—even though the
values sent are either correct or identifiably bad. It is
possible to treat such cases as a new class of faults,
which, depending on practical considerations, may be
an interesting area for future research.

9Some preprocessing of timeouts, parity and “reasonable-
ness” checks, etc. may be necessary to identify manifestly faulty
values. The intended interpretation is that the receiver detects
the incoming value as missing or bad, and then replaces it by
the distinguished value E.
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3.2 The Algorithm

It seems that the flaw in Algorithm Z stems from
the fact that it does not distinguish between values re-
ceived from manifest-faulty processors and the report
of such values received from nonfaulty processors; the
single value E is used for both cases. Thus, a plau-
sible repair for Algorithm Z introduces an additional
distinguished value RE (for Reported Error); when a
manifestly faulty value is received, the receiver notes
it as E, but passes it on as RE; if an RE is received,
it is noted and passed on as such. Only E values are
discarded when the majority vote is taken. In the
counterexample to Algorithm Z given above, the non-
faulty receivers in this modified algorithm will each
interpret the value received from the transmitter as E,
and pass it on to the other receivers as RE. In their
majority votes, each nonfaulty receiver has a single
E (from the transmitter), which it discards, two REs
(from the other nonfaulty receivers), and an arbitrary
value (from the faulty receiver). All will therefore se-
lect RE as the value ascribed to the transmitter.

Unfortunately this modified algorithm has two de-
fects. First, a receiver that obtains a manifest-faulty
value from the transmitter notes it as E, but passes
it on as RE. Thus, this receiver will omit the value
from its majority vote, but the others will include
it (as RE). This asymmetry can be exploited by an
arbitrary-faulty transmitter to force the receivers into
disagreement (consider an arbitrary-faulty transmitter
and three nonfaulty receivers, where the transmitter
sends the values E, RE, and a normal value).

It therefore seems that receivers must distinguish
between an E received from the transmitter (which
must be treated locally as RE and passed on as such),
and one received from another receiver (which can be
discarded in the majority vote). This repair fixes one
problem, but leaves the other: the value ascribed to
a manifest faulty transmitter is not E, but RE. This
might seem a small inconvenience, but it causes the
algorithm to fail when m, the number of rounds, is
greater than 1 (consider the case n = 6, m = 2 when
there is a nonfaulty transmitter and three manifest-
faulty receivers).

A repair to this difficulty might be to return the
value E whenever the majority vote yields the value
RE. This modification has the problem that receivers
cannot distinguish a manifest-faulty receiver from a
nonfaulty one reporting that another is manifest-
faulty (consider the case n = 4, m = 1, all the pro-
cessors are nonfaulty, and the transmitter is trying to
send RE—as can arise in recursive cases when m > 1).

Like Thambidurai and Park did for Algorithm Z, we
produced rather convincing, but nonetheless flawed,
informal “proofs of correctness” for these erroneous
repairs to Algorithm Z. Eventually, the discipline of
formal verification (where one must deal with the im-
placable skepticism of a mechanical proof checker and
is eventually forced to confront overlooked cases and
unstated assumptions) enabled us to develop a gen-
uinely correct algorithm for this problem.

Our new algorithm, OMH (for “Oral Messages, Hy-
brid”), is somewhat related to the last of the modifi-
cations to Algorithm Z indicated above, but recog-
nizes that a single “reported error” value is insuffi-
cient. OMH employs two functions R and UnR that
act as a “wrapper” and an “unwrapper” for error val-
ues.

The basic idea of OMH is that at each round, the
processors do not forward the actual value they re-
ceived. Instead, each processor sends a value corre-
sponding to the statement “I’m reporting value.” One
can imagine that after several rounds, messages cor-
responding to “I’m reporting that he’s reporting that
she’s reporting an Error value” arise. This wrapper
is only required for error values, but for simplicity we
assume that the functions R and UnR are applied to
all values. Alternatives to this are explored in Sec-
tion 4. This leaves the following intuitive picture of
the algorithm.

Proceed as in the usual OM Byzantine agreement
algorithm presented above, with the following excep-
tions. Add a distinguished error value E, and two
functions on values R and UnR. When a manifestly
bad value is received, temporarily record it as the spe-
cial value E. When passing along a value received
from the transmitter or incorporating it into the local
majority vote, apply R, standing for “I report. . . ” to
the value. Discard all E values (received from other
receivers) before voting, but treat all other error val-
ues (R(E), R(R(E)), etc.) as normal, potentially valid
values during voting. After voting, apply UnR (strip
off one R) before returning the value.

The key idea here is that in Z and related algo-
rithms there is a confusion about which processors
have manifest faults: if there is only one error value, E,
how can a processor distinguish between a manifest-
faulty receiver and a good receiver reporting a bad
value (or the lack of a value) from a manifest-faulty
transmitter? The counterexample to Algorithm Z
given above exploits this confusion, but it is handled
correctly by OMH, because the nonfaulty receivers in
OMH(1) each receive a single E from the transmitter,
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which they pass on to the other receivers and them-
selves as R(E). The values thus voted on include three
R(E)s and an arbitrary value (from the arbitrary-
faulty receiver). All nonfaulty receivers therefore se-
lect R(E) as the majority value. After stripping one
R from this value, the result correctly identifies the
transmitter as manifest-faulty. In short, OMH incor-
porates the diagnosis of manifest faults into the agree-
ment algorithm.

The Hybrid Oral Messages Algorithm OMH(m) is
defined more formally below. A completely formal
specification is given in Appendix A.

OMH(0)

1. The transmitter sends its value to every
receiver.

2. Each receiver uses the value received
from the transmitter, or uses the value
E if a missing or manifestly erroneous
value is received.

OMH(m), m > 0

1. The transmitter sends its value to every
receiver.

2. For each p, let vp be the value receiver
p obtains from the transmitter, or E if
no value, or a manifestly bad value, is
received.

Each receiver p acts as the transmitter
in Algorithm OMH(m−1) to communi-
cate the value R(vp) to all of the n − 1
receivers, including itself.

3. For each p and q, let vq be the value re-
ceiver p received from receiver q in step
(2) (using Algorithm OMH(m − 1)), or
else E if no such value, or a manifestly
bad value, was received. Each receiver
p calculates the majority value among
all non-error values vq received, (if no
majority exists, the receiver uses some
arbitrary, but functionally determined
value) and then applies UnR to that
value, using the result as the transmit-
ter’s value.

3.3 Semiformal Notation and Proofs

We make explicit a few unsurprising technical as-
sumptions:

• All processors are either nonfaulty, arbitrary-
faulty, symmetric-faulty, or manifest-faulty. (Any
fault not otherwise classified is considered arbi-
trary.)

• Processors do not change fault status during the
procedure; for example, if a nonfaulty processor
were to become manifest-faulty during this pro-
cedure, we would say that processor is arbitrary-
faulty because it has effectively sent different val-
ues to other processors.

• For all values v, R(v) 6= E. (Wrapped values are
never mistaken for errors.)

• For all values v, UnR(R(v)) = v. (Unwrapping a
wrapped value results in the original value.)

Algorithm OMH must satisfy the Byzantine Gen-
erals conditions naturally extended to the fault model
described above.

When the transmitter is symmetric-faulty, it is con-
venient to call the unique value received by all non-
faulty receivers the value actually sent by the trans-
mitter.

BGH1: If processors p and q are nonfaulty, then they
agree on the value ascribed to the transmitter;
that is, νp = νq .

BGH2: If processor p is nonfaulty, the value ascribed
to the transmitter by p is

• The correct value v, if the transmitter is non-
faulty,

• The value actually sent, if the transmitter is
symmetric-faulty,

• The value E, if the transmitter is manifest-
faulty.

The argument for the correctness of OMH is an
adaptation of that for the Byzantine Generals formu-
lation of OM [7, page 390]. We define

• n, the number of processors,

• a, the maximum number of arbitrary-faulty pro-
cessors the algorithm is to tolerate,

• s, the maximum number of symmetric-faulty pro-
cessors the algorithm is to tolerate,
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• c, the maximum number of manifest-faulty pro-
cessors the algorithm is to tolerate,10

• m, the number of rounds the algorithm is to per-
form.

Lemma 1 For any a, s, c and m, Algorithm
OMH(m) satisfies BGH2 if there are more than 2(a +
s) + c + m processors.

Proof: The proof is by induction on m. BGH2
specifies only what must happen if the transmitter
is not arbitrary-faulty. In the base case m = 0, a
nonfaulty receiver obtains the transmitter’s value if
the transmitter is nonfaulty. If the transmitter is
symmetric-faulty the value obtained is the value ac-
tually sent. If the transmitter is manifest-faulty the
receiver obtains the value E. So the trivial algorithm
OMH(0) works as advertised and the lemma is true for
m = 0. We now assume the lemma is true for m − 1
(m > 0), and prove it for m.

In step (1) of the algorithm, the transmitter effec-
tively sends some value ν to all n− 1 receivers. If the
transmitter is nonfaulty, ν will be v, the correct value;
if it is symmetric-faulty, ν is the value actually sent; if
it is manifest-faulty, ν is E. In any case, we want all
the nonfaulty receivers to decide on ν.

Memo: Hybrid-majority doesn’t seem to be defined
before it’s used.

In step (2), each receiver applies OMH(m−1) with
n − 1 participants. Those receivers that are non-
faulty will apply the algorithm to the value R(ν).
Since by hypothesis n > 2(a + s) + c + m, we have
n − 1 > 2(a + s) + c + (m − 1), so we can apply the
induction hypothesis to conclude that the nonfaulty
receiver p gets vq = R(ν) for each nonfaulty receiver
q. Let c′ denote the number of manifest-faulty proces-
sors among the receivers. At most (a + s + c′) of the
n − 1 receivers are faulty, so each nonfaulty receiver
p obtains a minimum of n − 1 − (a + s + c′) values
equal to R(ν). Since there are c′ manifest-faulty pro-
cessors among the receivers, a nonfaulty receiver p also

10We cannot use m for the number of manifest-faulty pro-
cessors, because the parameter m is traditionally used for the
number of rounds (although Thambidurai and Park use r). The
symbol c can be considered a mnemonic for “crashed,” which is
one of the failures that can generate manifest-faulty behavior.

obtains a minimum of c′ values equal to E and, there-
fore, at most n − 1 − c′ values different from E. The
value R(ν) will therefore win the hybrid-majority vote
performed by each nonfaulty processor p, provided

2(n − 1 − (a + s + c′)) > n − 1 − c′,

that is, provided

n > 2(a + s) + c′ + 1.

Now, c′ ≤ c, and 1 ≤ m, so this condition is ensured
by the constraint

n > 2(a + s) + c + m.

Finally, UnR is applied to the result R(ν), which re-
sults in final value ν. 2

Theorem 1 For any m, Algorithm OMH(m) satisfies
conditions BGH1 and BGH2 if there are more than
2(a + s) + c + m processors and m ≥ a.

Proof: The proof is by induction on m. In the base
case m = 0 there can be no arbitrary-faulty processors,
since m ≥ a. If there are no arbitrary-faulty proces-
sors then the previous lemma ensures that OMH(0)
satisfies BGH1 and BGH2. We therefore assume that
the theorem is true for OMH(m − 1) and prove it for
OMH(m), m > 0.

We next consider the case in which the transmit-
ter is not arbitrary-faulty. Then BGH2 is ensured by
Lemma 1, and BGH1 follows from BGH2.

Now consider the case where the transmitter is
arbitrary-faulty. There are at most a arbitrary-faulty
processors, and the transmitter is one of them, so at
most a − 1 of the receivers are arbitrary-faulty. Since
there are more than 2(a+ v)+ c+m processors, there
are more than 2(a + s) + c + m − 1 receivers, and

2(a + s) + c + m − 1 > 2([a − 1] + s) + c + [m − 1].

We may therefore apply the induction hypothesis to
conclude that OMH(m− 1) satisfies conditions BGH1
and BGH2. Hence, for each q, any two nonfaulty re-
ceivers get the same value for vq in step (3). (This
follows from BGH2 if one of the two receivers is pro-
cessor q, and from BGH1 otherwise). Hence, any
two nonfaulty receivers get the same vector of val-
ues v1, . . . , vn−1, and therefore obtain the same value
hybrid-majority(v1 , . . . , vn−1) in step (3) (since this
value is functionally determined), thereby proving
BGH1. 2
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3.4 Benefits

Recall that OM achieves agreement and validity if
there are more than three times as many good proces-
sors as arbitrary-faulty processors (n > 3a). From the
bounds given in Theorem 1, n > 2(a + s) + c + m and
m ≥ a, it may be seen that OMH achieves the same
resilience to arbitrary faults if there are no symmetric-
faulty or manifest-faulty processors.

Memo: Also, from Theorem 2, if a = s = 0, then
all that is required is that n > c.

Number of Faults
Arbitrary (a) Symmetric (s) Manifest (c)

1 1 0
1 0 2
0 2 0
0 1 2
0 0 5

Table 1: Fault-Masking Capabilities of OMH(1) with
n = 6

Memo: Need to explain the final 5.

Table 1 indicates the different numbers of simul-
taneous faults that a 6-plex can withstand using
OMH(1); for comparison, observe that OM(1) can
withstand only a single (arbitrary) fault in this config-
uration. Thambidurai, Park and Trivedi [20] present
reliability analyses that show this increased fault-
tolerance indeed provides superior reliability under
plausible assumptions11.

Memo: Following is moved in report

Although a major improvement on OM, the num-
ber of faults that can be tolerated by OMH according

11Although algorithm Z is somewhat flawed, the analysis
in [20] can be correctly applied to OMH

to the analysis given above is clearly not optimal in
some of the extreme circumstances. In some cases, the
algorithm is suboptimal, in others, the general anal-
ysis above is too conservative. As an example of the
latter, consider the case where only manifest faults are
present. In this case, the general analysis shows that
the number of faults that can be tolerated is n−m−1:
in other words, the greater the number of rounds, the
less manifest faults can be tolerated. In fact, alternate
analysis shows that OMH(m) tolerates the maximum
possible number (i.e., n−1) of manifest-faulty proces-
sors when there are no arbitrary nor value faults.

Theorem 2 If arbitrary and value-faults are not
present, Algorithm OMH(m) satisfies conditions
BGH1 and BGH2 if there are more than c processors.

This theorem has been formalized and mechanically
verified, but we do not give the details of the proof
here.

When only value-faults are present, however, it is
the algorithm, rather than its general analysis, that
is less than optimal. Here, the additional rounds of
message exchanges are actively counter-productive in
the cases m > 0 (compare n = 4, v = 2 for the cases
m = 0 and m = 1). Additional rounds of messages
are the price paid for overcoming arbitrary faults, and
these seem to reduce the ability to deal with value
faults. An interesting topic for future research is to
investigate whether this trade-off can be mitigated.

4 Practical Considerations

The OMH algorithm has been presented in an ab-
stract form to facilitate formal specification, verifica-
tion, and presentation. Additional practical consid-
erations have been incorporated in alternate formal
specifications, and are briefly discussed here. We have
not formally verified these modified versions.

Possible low-level implementations of R and UnR
are increment and decrement operations, assuming all
data values are integers and E is assigned one less
than the smallest data value. Intermediate error val-
ues such as R(R(E)) may overlap with other actual
values (such as 2), but the final result remains cor-
rect because UnR (decrement) is always applied to
the output of the majority vote.

Note that the requirements on R and UnR (for all
v, R(v) 6= E, and UnR(R(v)) = v), impose an infi-
nite family of values, E, R(E), R(R(E)), . . .. How-
ever, for an m round OMH, just m+1 error values (E
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up to Rm(E)) suffice with the following modifications
to the algorithm. Add a test to the OMH algorithm
comparing the number of applications of R with the
depth of recursion in OMH. (This is not the same as

Rx mod m(E).) Any value with more Rs than elapsed
rounds may be replaced by E. In the common case of
one round OMH, two error values, E and R(E), suf-
fice. The above low-level implementation may be used
with this modified algorithm if the largest m + 1 data
values are reserved.

Using these techniques, one may reduce the over-
head of using OMH-like algorithms (as compared to
OM) to a small constant number of extra data values,
and a slightly more complex algorithm. The message
complexity of OMH, and all OM-like algorithms can
be quite large (exponential) in the limiting case, but
this is of less concern for implementations using small
numbers of rounds, and there may be modifications to
OMH which reduce this message complexity a great
deal.

5 Formal Specification and Verifica-

tion of OMH

The OMH(n) algorithm and properties have been
formally specified and verified using the PVS verifica-
tion system [13]. The formal specification of OMH was
derived from one for the classical OM algorithm [15]
and was iteratively developed as failed attempts at
formal verification exposed the errors described ear-
lier. In more than one case the authors developed
convincing informal arguments and attempted to ver-
ify the claims using PVS. The tirelessly skeptical the-
orem prover would not accept these flawed arguments,
and eventually led us to discover counterexamples in
these supposed algorithms. Finally, we were able to
develop the new algorithm presented above, and prove
that correct. The specification and verification are de-
scribed in detail elsewhere [8, 9].

The greatest benefit of the formal specification and
verification in this case has been the refinement of our
own understanding. It is very easy for humans to be
convinced to the correctness of flawed algorithms in
complex and unnatural domains. It has been argued
that a large part of the added value of formal methods
lies in specification. Formal specifications serve as a
prod to clarify ones thinking as well as provide a means
of communication less subject to error and misinter-
pretation than traditional documentation. However,
the additional step of verification has proved critical

in this case. Our formal specification of the flawed al-
gorithms only served to firm our erroneous convictions
about them. Only through failed attempts at formal
verification were some of the errors detected.

The further step of validating the specification is
also suggested; the assumptions of a formal specifica-
tion must match the intended application. Peer re-
view is perhaps the best method of ensuring that a
set of assumptions are true about the intended appli-
cation, but another tool we use is putative theorem
proving. One formulates theorems that ”should” be
true if the specification matched the application, and
verifies them. In the application here, for example, one
might hope that a message sent from a nonfaulty chan-
nel to itself is always received correctly, and that the
hybrid majority of a collection of values not containing
E is the same as the simple majority of that collection.
We produced one specification of a flawed algorithm
for which we were able to prove the validity property.
However, one of the axioms about hybrid majority was
stated incorrectly. Only through attempting to prove
putative theorems and refine the specification did the
inconsistency of the axioms become apparent.

Full PVS specifications and PVS proofs are avail-
able from the authors or by anonymous FTP from
FTP.CSL.SRI.COM.

FOR THE CONCLUSION:

We are not interested in pushing the envelope of
size and complexity of verified systems. Our interest
is in providing added value to the system validation
process. In this vein we have chosen particularly crit-
ical and troublesome aspects of system operation.

...Although the cost of formal verification is still
high,

6 Conclusions

Thambidurai and Park’s hybrid fault model ex-
tends the design and analysis of Byzantine fault-
tolerant algorithms in an important and useful way.
Hybrid fault-tolerant algorithms can tolerate greater
numbers of “simple” faults than classical Byzantine
fault-tolerant algorithms, without sacrificing the abil-
ity to withstand Byzantine, or arbitrary, faults. Un-
fortunately, their Algorithm Z for achieving Interac-
tive Consistency under a hybrid fault model is incor-
rect. In the preceding sections, we have described the
problem with Algorithm Z and presented OMH, a cor-
rect algorithm for this problem.
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Memo: We applied our formal verification tools to
this domain, discovering errors in published proofs
and in a proposed algorithm for Byzantine Agree-
ment under this fault model.

A crucial tool in our detection of the flaw in Tham-
bidurai and Park’s algorithm, and also in detecting
flaws in our own early attempts to repair this algo-
rithm, was our use of mechanically-checked formal ver-
ification. The discipline of formal specification and
verification was also instrumental in helping us to de-
velop the correct algorithm presented here. The rigor
of a mechanically-checked proof enhances our convic-
tion that this algorithm is, indeed, correct, and also
helped us develop the informal, but detailed, proof
given here in the style of a traditional mathematical
presentation.

It is worth repeating that no formal verification
proves any program “correct”. At most, a program
is shown to satisfy a specification, and shown to ex-
hibit certain properties under a whole host of assump-
tions about the context in which the program is run.
The true benefit of formal specification and verifica-
tion is not in getting a theorem prover to say proved,
but rather in refining one’s understanding through di-
alogue with a tirelessly skeptical theorem prover.

The effort required to perform this formal verifica-
tion was not particularly large and did not seem to
us to demand special skill. We attribute some of this
ease in performing formal verification of a relatively
tricky algorithm to the effectiveness of the tools em-
ployed [13]. These tools (and others that may be of
similar effectiveness) are freely available. In light of
the flaws we discovered in Thambidurai and Park’s
algorithm, and had previously found in the proofs for
other fault-tolerant algorithms [17,18], we suggest that
formal verification should become a routine part of the
social process of development and analysis of fault-
tolerant algorithms intended for practical application
in safety-critical systems.

In future work, we hope to explore possible exten-
sions to the OMH algorithm and its analysis to in-
clude communication faults, and to see whether larger
numbers of symmetric faults can be tolerated. We
also intend to study whether lower message complex-
ity can be achieved in cases of practical interest, and
to examine alternative architectures employing fewer
processors (we have already formally specified and ver-
ified a variant of OMH(1) for the asymmetric Draper

FTP architecture [4]). We also plan to formally verify
a modified version of the Interactive-Convergence Al-
gorithm for clock synchronization using a hybrid fault
model that includes communication faults (we have
already formally verified the standard algorithm [16],
and have an informal analysis of the modified version).
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Appendix A: Specification in PVS

The formal specification imports some predefined theo-
ries and defines some shorthand notations for treating fcu
(channel) statuses as predicates and filters. There are a
few lemmas easily proved by induction about cardinality,
filters, and remove. Then send is axiomatized.

send is a function that captures the properties of send-
ing values from one channel to another. We axiomatize
send as a function that takes a value to be sent, a sender,
and a receiver as arguments, and returns the result received
by the receiver. A drawback to this formal specification of
send is that even arbitrarily faulty processors must always

12



send the same (possibly bad) value to the same proces-
sor, even in different rounds of the protocol. This fact is
not exploited in the proof, but it may be preferable to de-
velop a relational axiomatization that does not make this
assumption. Natarajan Shankar has axiomatized the OM
algorithm using a relational send that avoids this assump-
tion, and has proven the resulting correctness conditions
as an exercise. distr is shorthand for a curried send. Hy-

bridMajority is axiomatized in a way that facilitates its
application to the proof of Validity. Essentially, it says
that the hybrid majority of a set is the correct value, if
all good processors in the set agree on that correct value,
which is not E, all crashed processors appear to have value
E, and there are enough good processors to outvote the
remaining Byzantine and value faulty processors. R and
UnR are axiomatized, and finally we specify the algorithm
OMH.

OMH is specified in a higher-order style that facilitates
the PVS proof, but which is a somewhat different view-
point from the informal description given above. OMH

takes four arguments: G, the Transmitter, r the number
of rounds, v1, a vector of values sent by the Transmitter,
and caucus, the set of processors participating in this in-
vocation of OMH. In the case that there are no rounds of
message passing, that is, r = 0, OMH simply reduces to the
vector of values sent by the Transmitter as v1. Otherwise,
OMH is the vector described by the lambda-expression.
That is, given a processor p, if p is the Transmitter, then
just use the value the Transmitter sent himself. If p is not
the Transmitter, then we apply UnR to the hybrid ma-
jority of a set of values. These value are arrived at by
recursive calls to OMH where each processor in turn as-
sumes the role of Transmitter, sending the R of its value
to all other processors in the caucus (including itself).

Validity is one of the two key lemmas, stating that if
there are enough good processors, and the Transmitter is
not Byzantine faulty, then running OMH is the same as
simply sending from the Transmitter to the final receiver.
Agreement is the other key lemma, stating that if there
are enough good processors, then no matter what state the
Transmitter is in, all good processors eventually agree on
the final result. Finally, ValidityFinal and AgreementFinal

are stated as the final theorems of interest.

The CrashOnly variants of these properties embody the
formal specification of Theorem 2, showing that the algo-
rithm is optimal in the case that there are no arbitrary nor
value faults. Note that analogous ArbitraryOnly theorems
also hold, giving optimal bounds, although these bounds
are trivial consequences of the general theorem. Also note
that analogous ValueOnly theorems would not give opti-
mal bounds.

omh[m : nat, n : posnat, T : type, error : T, R, UnR : [T → T ]] :
theory begin

assuming act : assumption (∀ (t : T ) : R(t) 6= error)
unact : assumption (∀ (t : T ) : UnR(R(t)) = t)

endassuming

rounds : type = upto[m]
t : var T
fcu : type = below[n]
fcuset : type = setof[fcu]
fcuvector : type = [fcu → T ]
G, p, q, z : var fcu
v, v1, v2 : var fcuvector
caucus : var fcuset
r : var rounds
importing finite cardinality[fcu, n, identity[fcu]],

filters[fcu],
card set[fcu, n, identity[fcu]],
hybrid mjrty[T, n, error]

statuses : type = {arbitrary, symmetric, manifest, nonfaulty}
status : [fcu → statuses]
a(z) : bool = arbitrary(status(z))
s(z) : bool = symmetric(status(z))
c(z) : bool = manifest(status(z))
g(z) : bool = nonfaulty(status(z))
as(caucus) : fcuset = filter(caucus, a)
ss(caucus) : fcuset = filter(caucus, s)
cs(caucus) : fcuset = filter(caucus, c)
gs(caucus) : fcuset = filter(caucus, g)

send : [T, fcu, fcu → T ]
send1 : axiom g(p) ⊃ send(t, p, q) = t
send2 : axiom c(p) ⊃ send(t, p, q) = error
send3 : axiom s(p) ⊃ send(t, p, q) = send(t, p, z)
OMH(G, r, t, caucus) : recursive fcuvector =

if r = 0
then (λ p : send(t, G, p))
else (λ p : if p = G

then send(t,G, p)
else UnR(HMajority(caucus − {G},

(λ q : OMH(q, r − 1, R(send(t, G, q)), caucus − {G})(p))))
endif)

endif

measure (λ G, r, t, caucus → nat : r)

Validity : theorem

g(p) ∧ ¬ a(G) ∧ 2 × |a| + 2 × |s| + |c| + m < n
⊃ OMH(G, m, t, fullset[fcu])(p) = send(t,G, p)

Agreement : theorem

g(p) ∧ g(q) ∧ |a| ≤ m ∧ 2 × |a| + 2 × |s| + |c| + m < n
⊃ OMH(G, m, t, fullset[fcu])(p) = OMH(G, m, t, fullset[fcu])(q)

end omh
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