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Abstract

Given a timed automaton M, a linear temporal logic formula ¢, and a bound &,
bounded model checking for timed automata determines if there is a falsifying
path of length k£ to the hypothesis that M satisfies the specification . This
problem can be reduced to the satisfiability problem for Boolean constraint for-
mulas over linear arithmetic constraints. We show that bounded model checking
for timed automata is complete, and we give lower and upper bounds for the
length £ of counterexamples. Moreover, we define bounded model checking for

systems of timed automata in a compositional way.
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Chapter 1

Introduction

Timed automata [AD94] are state-transition graphs augmented with a finite
set of real-valued clocks. The clocks proceed at a uniform rate and constrain
the times at which transitions may occur. Given a timed automaton and a
property expressed in a timed logic such as TCTL [ACD90] or 7, [HNSY94]

model checking answers the question of whether or not the timed automaton

3

satisfies the given formula. The fundamental graph-theoretic model checking
algorithm by Alur, Courcoubetis, and Dill [ACD90] constructs a finite quotient,
the so-called region graph, of the infinite state graph. Algorithms directly based
on the explicit construction of such a partition are, however, unlikely to per-
form efficiently in practice, since the number of equivalence classes of states of
the region graph grows exponentially with the largest time constant and the
number of clocks that are used to specify timing constraints. Symbolic model
checking algorithms are obtained by characterizing regions as Boolean combi-
nations of linear inequalities over clocks [HNSY94]. Based on these algorithms,
tools for verifying timed automata, such as Uppaal [LPY97], Kronos [DOTY96]
HyTech [HHWT97], and Tempo [Sor01], have been developed.
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As an alternative to classical model checking, the technique of bounded
model checking has been recently introduced [CBRZO01]. Given a system M
modeled as a state machine, a temporal logic specification ¢, and a bound k,
the bounded model checking (BMC) problem consists in searching for counterex-
amples of length k to the model checking problem M = ¢. The BMC problem

for finite state models can be reduced to a propositional satisfiability problem,



and off-the-shelf propositional satisfiability (SAT) checkers are used to construct
counterexamples from satisfying assignments to the propositional variables. It
has been demonstrated that BMC is in many cases more effective in falsify-
ing designs than traditional model checking techniques [CBRZ01, CFFT01].
In [dMRSO02] the BMC paradigm has been extended to programs over infinite
state space, and LTL formulas augmented with a decidable set of constraints.
For an infinite state system M, a linear temporal logic formula with constraints
o, and a bound k, it has been illustrated how a Boolean constraint formula,
[M,¢],, can be constructed that is satisfiable if and only if there is a coun-
terexample of length k for the model checking problem M = ¢. BMC for
infinite state systems is sound, and for invariant properties also complete, but
incomplete for the entire LTL logic.

The main contribution here is to show that BMC for timed automata is
indeed complete for all LTL formulas with clock constraints. We describe how
a timed automaton can be directly encoded into a Boolean constraint formula,
without constructing the corresponding region graph. Our approach is com-
positional, in that Boolean constraint formulas encoding complex systems can
be obtained by Boolean combinations of the encoding of the components. Ob-
viously, this compositional approach reduces the size of the generated formula
considerably. Moreover, we give lower and upper bounds for the length & of
counterexamples that depend on the size of the LTL formula and the size of the
region graph corresponding to the given timed automaton.

The paper is structured as follows. In Chapter 2 we provide some background
information on Boolean constraints. Chapter 3 reviews the basic notions of
timed automata. Chapter 4 presents the details of BMC for timed automata
together with the completeness results. Lower and upper bounds for the length
k of counterexamples are given. Chapter 5 illustrates BMC for networks, that is,
parallel composition of timed automata, and shows how complex systems can be
encoded into a Boolean constraint formula in a compositional way, without first
computing the product automaton of the components. Finally, in Chapter 6 we
present, some experimental results using Fischer’s mutual exclusion protocol as

a benchmark, and draw conclusions.



Chapter 2

Background

A set of variables V := {z1,...,2,} is said to be typed if there are nonempty
sets Dy through D,, and a type assignment T such that 7(x;) = D;. For a set of
typed variables V', a wvariable assignment is a function v from variables z € V
to an element of 7(x).

Let V be a set of typed variables and L be an associated logical language.
A set of constraints in L is called a constraint theory C if it includes constants
true, false and if it is closed under negation; a subset of C of constraints with
free variables in V' C V is denoted by C(V'). For ¢ € C and v an assignment for
the free variables in ¢, the value of the predicate [c], is called the interpretation
of ¢ wr.t. v. Hereby, [true], ([false],) is assumed to hold for all (for no) v,
and [—c], holds iff [¢], does not hold. A set of constraints C' C C is said to
be satisfiable if there exists a variable assignment v such that [c], holds for
every ¢ in C'; otherwise, C is said to be unsatisfiable. Furthermore, a function
C-s5at(C) is called a C-satisfiability solver if it returns L if the set of constraints
C is unsatisfiable and a satisfying assignment for C' otherwise.

For a given theory C, the set of Boolean constraints Bool(C) includes all con-
straints in C and it is closed under conjunction A, disjunction V, and negation
—. The notions of satisfiability, inconsistency, satisfying assignment, and satis-
fiability solver are homomorphically lifted to the set of Boolean constraints in
the usual way. If V.= {p1,...,pn} and the corresponding type assignment 7(p;)
is either true or false, then Bool({#rue, false} U V') reduces to the usual notion

of Boolean logic with propositional variables {p1,...,p,}.



Chapter 3

Timed Automata

We review some basic notions of transition systems and timed automata. Timed
automata, as introduced by Alur, Courcoubetis, and Dill [ACD90], are state-
transition graphs augmented with a finite set of real-valued clocks. Given a set
of clocks Cl = {x1,...,2,}, a clock-valuation function v : Cl — IR assigns
a (positive) real value to each clock. Clock constraints compare clock values
with rational constants. Given a set CI of clock variables (or simply clocks),
1,z arbitrary clocks, v € @2°, and ~ € {<,>, <, >, =}, the set ® of clock (or

timing) constraints over Cl is defined by the grammar
gi=1tt | [z ~y |21 —22~7 [ g1 A g

For a positive integer d, ®(d) is the finite subset of all timing constraints = ~ -,
x—y ~ 7, where z,y € Cl, ~ € {<,<,=,>,>} and v € {0,...,d}. Clock
constraints over CI are interpreted with respect to clock-valuation functions
v:Cl— IRa'. For a clock-valuation function v and a clock constraint g over CI,
we write v R g (to be read as “v satisfies g”) to denote that according to the
values given by v the constraint g evaluates to true. Formally, v g is defined
inductively over the syntactic structure of g, where x1,z5 € Cl are arbitrary

clocks, v € @7°, and ~ € {<,>, <, >, =}:

v gt £f VRt vR Ty — x9 ~ iff v(z) —v(w2) ~ v
vz ~yiff v(z) ~ 7y vRg ANg iff v g and v go
For 6 € RZ", v + & denotes the clock valuation that maps each clock z € Cl

to the value v(x) 4+ 0. For a clock = € CI, vz := 0] denotes the clock valuation



Figure 3.1: Example of a timed automaton (the simple example).

for CI that maps z to the value 0 and leaves all the other clock values unchanged.

A timed automaton S is a tuple (L,ly, Cl, E, Inv), where L is a nonempty
finite set of locations, Iy C L is the initial location, and C! is a finite set of
clocks. Inv : L — & assigns a set of downward closed clock constraints to
each location L; the elements of Inv(l) are the invariants for location I. E C
L xP(®) x P(Cl) x L is a finite set of edges. An edge e = (I, g,r,l") represents
a transition from location [ to location I’. A transition may be fired only if the
timing constraint (guard of the transition) g holds with respect to the current
value of the clocks, and if the invariant of the target location is satisfied with
respect to the modified value of the clocks. Firing a transition does not only
change the current location but also resets the clocks in r to 0.

A timed automaton with three locations Iy, I, Is and two clocks z, y is
displayed in Figure 3.1. The initial location is [y, and transitions are decorated
with both timing constraints and clock resets such as x := 0. The invariant for
location Iy is y < 1. Timing constraints that are true are omitted.

Alur, Courcoubetis, and Dill [ACD90] introduce the fundamental notion of
clock regions, which partition the space of possible clock evaluation for a timed
automaton into finitely many regions. For a timed automaton S with clocks CI
and largest constant d, occurring in any timing constraint of S, a clock region is
a set x of clock valuations, such that for all timing constraints g € ®(d) and for
any two vy, vy € X it is the case that vy ke ¢ if and only if v5 R g. In this case we
write v1 =g vo. We will use [v] to denote the clock region to which v belongs.

A state of a timed automaton S is a pair (I,v) where I € L is a location of
S and v a clock valuation for Cl. An initial state is of the form (ly,v9) where
lp denotes the initial state of S and vy maps all clocks in CI to 0. We extend

the satisfiability relation for clock constraints on states, as follows: for a state



(I,v) and a timing constraint g, ([,v) kg iff v g. A timed step is either a
delay step, where time advances by some positive real-valued J, or an instan-
taneous state transition step. For a timed automaton & = (L, 1y, Cl, E, Inv),
and 0 > 0, we say that the state (I,v 4+ ¢) is obtained from (I,v) by a de-
lay step (l,v)i>(l,v + ¢), if the invariant constraint v + 0 g Inv(l) holds. A
state transition step (I,v)25(I',v') occurs if there exists an edge (I, g, r,1'), and
vieg, v = o[r := 0], and o'k Inv(l'). The union of delay and state tran-
sition steps defines the timed transition relation = of a timed automaton S.
Now, a path 7 is an infinite sequence of states (lg,vo),(l1,v1),... such that

(liyvi)= (Lig1,vi41), Vi > 0.



Chapter 4

System Verification

In presenting the details of BMC for timed automata together with the com-
pleteness results, we assume as given a solvable constraint theory C that in-
cludes the clock constraints ®, and constraints of the form =z’ —z = y' — v,
where z, ', y,y" € Cl are clock variables. To make this paper as self-contained
as possible, we recall some notions and definitions from [dMRS02]. For the sim-
plicity of the presentation we consider only timed automata that are nonzeno.
A complete BMC procedure for timed automata, however, requires an explicit

encoding of nonzenoness such as, for example, the one given in [MRS02].

Definition 1 (C-Programs) Typed variables in V := {z,...,x,} are also
called state variables, and a program state is a variable assignment over V. A
pair (I,T) is a C-program over V if I € Bool(C(V)) and T' € Bool(C(V U V"))

where V' is a primed, disjoint copy of V. I is used to restrict the set of initial

program states, and 7" specifies the transition relation between states and their

successor states. The set of C-programs over V' is denoted by Prg(C(V)).

The semantics of a program P is given in terms of a transition system M in the
usual way, and, by a slight abuse of notation, we sometimes write M for both
the program and its associated transition system.

A timed automaton S = (L, ly, Cl, E, Inv) can easily be described in terms of
a program with linear arithmetic constraints over states (at,z1,...,%,), where
at is interpreted over the set L of locations and the clock variables z1,...,z, €

Cl are interpreted over IR .



Definition 2 Given a timed automaton S = (L,ly, Cl, E, Inv), with Cl =
{z1,...,z,} the set of clocks. S can be defined as a (I, T') program in Prg(C(V))

over the set V = {at,xy,...,zn, at’ 2}, ... 2!} as follows.

e Definition of the initial state [°

I'=(at=1l Nx1=0A ... AN z,=0).
e Definition of a state transition step corresponding to e = (I, g,7,l') € E
T(e):=(at=1ANgAzi=2zn AN ... ANz, =2, A at' =1

where z; = 0 if z; € r; otherwise z; = x;.

e Definition of delay steps (Inv(S) is the set of all locations that have an

invariant different from true.)

delay = 35 >0. ( /\ (at =1 = Inv(l)(x},...,2)))
l1€Inv(S)
A (at' = at)
AN@y=z14+8) A ... A (z), =z, +0)).
The state formula Inv(l)(z},...,z,) is obtained from the invariant of lo-
cation [, Inv(l), by replacing the variables x1,. .., 2, in the constraints of

!
n-

Inv(l) by the primed variables z},..., =

e Definition of the transition relation 7' (® denotes the exclusive or connec-
tive)

T := Q.cpT(e) ® delay.

The timed automaton depicted in Figure 3.1, for example, is expressed in
terms of the program (I,T) over states (at,z,y), where at is interpreted over
the set of locations {ly, 1,2}, and the clock variables z,y are interpreted over
IRS'. Initially, the program is in location ly and the value of the clocks z,y is
equal to 0. The transitions are encoded by a conjunction of constraints over the

current state variables at, z,y and the next state variables at’, z’,y’.

I(at,z,y) = (at=1lp N z=0 AN y=0)
T(at,z,y,at',x',y") = (at=Ilg A’ =0 ANy =y A at' =1y ®
(at =lg N2’ =0 ANy =y ANat'=11)®

10



(at=lg ANy>c Az =z Ay =y A at' =})®
(at=0I ANy =0A2" =2 A at' =1 ®
(at=lh N>y Aa' =z ANy =y A at'=1)®

del{ly(at7 "E7 y7 atl7 :I:l7 yl)
The delay steps are encoding as

delay(at,x,y, at', 2’ y') =
36>0. ((at=lp =y <1) A (at' =at) ANz =2+5) A (v =y+9)).

The above formula is not contained in Bool(C), since the definition of delay
contains an existential quantifier. After performing quantifier elimination we

obtain

delay(at,z,y, at', z',y") =

((at=lo=y <) A @ —2>0 A Y —y=12"—2)A (at’' = at)).

The formulas of the constraint linear temporal logic LTL(C) are linear-time tem-
poral logic formulas with the usual “until” and “release” operators, and con-

straints ¢ € C as atoms. Note that only constraints in ® are allowed.

@ = true | false | ¢ | o1 Apa | o1 Vs | 01U o | o1 R @2

The derived operators F ¢ = true U ¢ and G ¢ = false R ¢ denote “eventually
¢” and “globally ¢” . Our logic does not contain a next-step operator. The
main interest in removing the next-step operator stems from the fact that we
do not want to distinguish between one delay step of duration, say, 1 and two
subsequent delay steps of durations 2/5 and 3/5, since these traces are con-
sidered to be observationally equivalent. Logics without an explicit next-step
operator have also been considered, for example, by Alur [Alu91], by Henzinger,
Nicollin, Sifakis, and Yovine [HNSY94], and by Dams [Dam96]. Given a pro-
gram M € Prg(C) and a path 7 in M, the satisfiability relation M, 7 = ¢ for
an LTL(C) formula ¢ is given in the usual way with the notable exception of the
case of constraint formulas ¢. In this case, M, 7 |= ¢ if and only if ¢ holds in the

start state of 7.

Definition 3 (Semantics of LTL(C)) Given a program M € Prg(C(V)) over

the set of typed variables V', a path 7 in the transition system associated with
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M, and a formula ¢ € LTL(C(V)), the satisfiability relation M, 7 |= ¢ is defined

inductively over the syntax of ¢.

M, 7 |= true
M, 7 [ false
M,gl=c it 7(0)Rc
M,ml=o1Nps it M, mwl= ¢ and M, 7 |= ¢
M,ml=o1 Vs it Mml=¢ or M, = @9
Moo Uy, iff JiMa' =g andVj <iM, 7w = @y
M,mnl=pi Ry iff ViM, 7' = or3j <i.M, 7 = s
Assuming the notation above, the C-model checking problem M = ¢ holds iff

for all paths 7 = sg, s1,... in M with so € I it is the case that M, n |= .

The following lemma states that the logic LTL(C) preserves bisimulation.

Lemma 1 Given a program M with a finite bisimulation M’ (i.e., M ~ M')
and a formula ¢ € LTL(C); then M |= ¢ iff M’ |= ¢.

Proof. The proof follows by induction over the structure of ¢. The cases

3

@ = true and ¢ = false are trivial.

Assume M, = ¢ for all paths 7 = (lo,vg), (I1,v1),... in M. Then
by Definition 3 M, |= ¢ iff (Iy,vp) Re. From (lp,vo) Rec by the definition of
clock regions it follows that (ly, [vo]) R ¢, where [vg] denotes the clock region of

M with v € [vg]. Again by Definition 3, we obtain that M’ [7] = ¢, where

(7] = (lo, [vo]), (I1, [v1]), - - -
Assume M, 7 |= ¢ for all paths 7 = (lo,v0), (l1,v1),... in M.

Then, by Definition 3 there exists i > 0 such that M, 7’ |= ¢ and M, 79 |= ¢s,
Vj < i. From the fact that M and M’ are bisimilar, we can construct a path
' = (lo, [vo]), (1, [v1]), - . ., such that v; € [v;] for all i > 0. By induction hypoth-
esis, M', 7' |= ¢y and M', 7" |= @,, and therefore by Definition 3, M', 7' |= ¢.
Since m & «’ for all paths 7 in M and «' in M’, it follows that M’ |= .

p=p1 R ps| Assume M,7 |= ¢ for all paths 7 = (lp,v0), (l1,v1),... in M.

Then, by Definition 3 for all i > 0, M, 7! |= ¢; or there exists j < i such that

M, 7 = 5. From the fact that M and M' are bisimilar, we can construct a

12



path 7' = (lo, [v0]), (l1, [v1]), - - -, such that v; € [v;] for all i > 0. By induction
hypothesis, M’ 7" |= ¢, for all i > 0, or M', 7" |= ¢, for some j < i. Thus,
by Definition 3, M', 7' = ¢. Since © =~ 7’ for all paths 7 in M and 7’ in M', it
follows that M’ |= .

Follows by induction hypothesis.
@ =1 V | Follows by induction hypothesis. ]

Now, given a bound k, a program M € Prg(C(V')) and a formula ¢ € LTL(C)
we consider the problem of constructing a formula [M, ¢], € Bool(C(V')), which
is satisfiable if and only if there is a counterexample of length &k for the C-model

checking problem M |= . This construction proceeds as follows.

1. Definition of [M], as the unfolding of the program M up to step k from

initial states (this requires k disjoint copies of V).

2. Translation of = into a corresponding Biichi automaton B-,, whose lan-

guage of accepting words consists of the satisfying paths of —y.

3. Encoding of the transition system for B-, and the Biichi acceptance con-

dition as a Boolean formula, say [B],.
4. Forming the conjunction [M, ¢], := [B], A [M],.

5. A satisfying assignment for the formula [M, ¢], induces a counterexample

of length k for the model checking problem M |= .

Definition 4 (Encoding of C-Programs) The encoding [M], of the kth
unfolding of a C-program M = (I,T) in Prg(C({z1,...,x,})) is given by the

Boolean constraint formula [A], .

Lo(2[0]) = I{{wi— 0] [ = € V})
Tij(z[0],...,z[k]) = T{zi— z[j] |z € VIU{z; » x;[j+ 1] |z € V})
k—1
[M]), == Io(x[0]) A /\ Tj(«[j], [j +1])

where {z;[j]]0 < j < k} is a family of typed variables for encoding the state of
variable z; in the jth step, z[j] is used as an abbreviation for z[j] ..., z,[j], and

T{x; — z;[j]) denotes simultaneous substitution of the x; by z;[j] in formula 7.
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A two-step unfolding of the simple program in Figure 3.1, for example, is en-
coded by [simple], == 1o N Ty N Ty (x).

Iy = (at[0] =1y A z[0] =0 A y[0] =0)
To = (atl0]=1y A z[1]=0 A y[1] =y[0] A at[l] =) ®
(at]0] =1lo A z[1] =0 A y[1]=y[0] A at[l]=1)®
(at[0] =1 A y[0] > z[0] A z[1] =z[0] A y[1] =y[0] A at[l]=1) ®
(atl0] =1 A y[1]=0 A z[1] =z[0] A at[l] =1)) ®
(at[0] = & A z[0] 2 y[0] A x[1] = z[0] A y[1] =y[0] A at[l] =1>) &
((at[0] = iy[l] <1) A (2[1] = 2[0] > 0) A
(y[1] = y[0] = x[1] = =[0]) A (at[1] = at[0]))
T o= (atfl] =1 A 2[2] =0 A y[2] = y[1] A at]2] =) ®
(at[l] =1lo A 2[2] =0 A y[2] = y[1] A at[2] = 1) ®
(at[1] = 1o A y[1] > 2[1] A 2[2] =2[1] A y[2] = y[1] A at[2] = 1) &
(at[1] =11 A y[2]=0 A 2[2] = z[1] A at[2] = 1) ®
(atl] =1 A 2[1] > y[1] A 22 = a[1] A y[2] = y[1] A at[2] =) ©
(at[1l] = 1o = y[2] <1) A (2[2] — 2[1] > 0) A

A difference between our approach and the BMC method presented in [CBRZ01]

consists in the encoding of the LTL formulas. While in [CBRZ01] LTL formu-
las are translated directly into propositional formulas, we use Biichi automata
for the encoding. This simplifies substantially the notations and the proofs.
The translation of linear temporal logic formulas into a corresponding Biichi
automaton is well studied in the literature (e.g., [GPVW95]) and does not re-
quire additional explanation. Notice, however, that the translation of LTL(C)
formulas yields Biichi automata with C-constraints as labels. Both the resulting
transition system and the bounded acceptance test based on the detection of
reachable cycles with at least one final state can easily be encoded as Boolean
constraint formulas [dMRS02].

Definition 5 (Encoding of Biichi Automata) Let V = {zy,...,z,} be a
set of typed variables, B = (3,Q, A, Q°, F) be a Biichi automaton with labels X

in Bool(C), and pc be a variable (not in V'), which is interpreted over the finite

14
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t =1

Figure 4.1: Automaton for F (at = [5).

set of locations ) of the Biichi automaton. For a given integer k, we obtain,
as in Definition 4, families of variables x;[j], pc[j] (1 < i < n, 0 < j < k) for
representing the jth state of B in a run of length k. Furthermore, the transition
relation of B is encoded in terms of the C-program Bj; over the set of variables
{pc} UV, and [By], denotes the encoding of this program as in Definition 4.

Now, given an encoding of the acceptance condition

acc(B)y, = ’Y (pc[k] = pelj] A /n\ajv[k] = :Uv[j]/\( \k/ \/ pell] = f))

I=j+1 feF

the k-th unfolding of B is defined by [B],. := [Ba], A acc(B)g.

Note that, as illustrated in [IMRSO02], whenever an LTL(C) formula does not
contain any release operators (R-free formula) it suffices to build an ordinary
automaton over finite words instead of a Biichi automaton. Every R-free for-
mula can be translated into an automaton over finite words that accepts a prefix

of all infinite paths satisfying the given formula.

Definition 6 Given an automaton B over finite words and the notation as in
Definition 5, the encoding of the k-ary unfolding of B is given by [Bas], Aacc(B)i

with the acceptance condition

k
acc(B)y == \/ \/ pcfil=f .
j=0 feF

Consider the problem of finding a counterexample of length k£ = 2 to the hypoth-
esis that our running example in Figure 3.1 satisfies G —(at = l5), that is, the
timed automaton never reaches location lo. The negated property F (at = Is)
is an R-free formula, and the corresponding automaton B over finite words is
displayed in Figure 4.1. This automaton is translated, according to Definition 6,

into the formula

[Bl, := I(B) NTo(B) NT1(B) A ace(B)s . (xx)

15



The variables pc[j] and z[j] (j = 0,1,2) are used to represent the first three

states in a run.

I(B) = (pc[0] = qo)
To(B) = (pc[0] = go A=(at[0] = l2) Ape[l] = go) ®
(pcl0] = qo A at[0] = lo Apc[l] = q)
Ti(B) = (pc[l] = qoA~(at[l] = l2) A pc[2] = qo) ®
(pefl] = qo A at[1] = I A pc[2] = q1)
acc(B)2 = (pc[0] = q1 Vpe[l] = q1 V pe[2] = q1)

The bounded model checking problem [simple], A [B], for the simple program
is obtained by conjoining the formulas (%) and (*x). Using the BMC procedure

over linear arithmetic constraints, one finds the counterexample
(l[),.’l? = an = 0) - (llam = Oly = O) - (lg,.’l? = an = 0)

of length 2. Counterexamples for timed property, such as G (at =1; = = > y),

can also be found by the BMC procedure.
The following two theorems are due to [dMRS02].

Theorem 1 (Soundness) Let M € Prg(C) and ¢ € LTL(C). If there exists a
natural number & such that [M, o], is satisfiable, then M [ .

Theorem 2 (Completeness for Finite State Systems) Let M be a C-program
with a finite set of reachable states, ¢ be an LTL(C) formula ¢, and k be a given
bound; then M # ¢ implies 3k € IN.[M, ¢],, is satisfiable.

In general, BMC over infinite domains is not complete. Consider, for ex-
ample, the model checking problem M = ¢ for the program M = (I,T) over
the variable V' = {2} with I = (z = 0) and T' = (2’ = 2 + 1) and the for-
mula ¢ = F(z < 0). M can be seen as a one-counter automaton, where
initially the value of the counter x is 0, and with every transition the value
of z is increased with 1. Obviously, it is the case that M [~ ¢, but there ex-
ists no k € IN, such that the formula [M,¢], is satisfiable. Since —¢ is not
an R-free formula, the encoding of the Biuichi automaton By must contain, by
Definition 5, a finite accepting cycle, described by pc[k] = pcl0] A z[k] = «[0] or
pelk] = pe[1] A z[k] = z[1] and so on. Such a cycle, however, does not exist, since
the program M contains only one noncycling, infinite path, where the value of

x increases in every step, that is, z[i + 1] = z[i] + 1, for all + > 0.
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Theorem 3 (Completeness for Timed Automata) Let M be a timed au-
tomaton defined as a C-program over a set of state variables V = {z1,...,z,},
and ¢ be a formula in LTL(C); then

M % ¢ implies 3k. [M, ], is satisfiable.

Proof. Let M’ be the finite region graph corresponding to M, also defined
as a C-program over the set of state variables V. From M # ¢, it follows by
Lemma 1, that M’ [ ¢. Let

[M', ], == [B], AIMT,

be the bounded model checking problem for M’ and ¢. Since M’ is finite, by
Theorem 2 there exists a &k such that [M', o], is satisfiable. It remains to show,
that if [M', ¢], is satisfiable then also [M, ], is satisfiable. From [M', o],
satisfiable it follows that [AM'], and [B], are satisfiable. By Definition 4

k=1
[M]y == L@lo) A A\ Tj (i), 2[j + 1))

=0
where the state formula I (2]0]) encodes the initial state (o, [vg]), and the for-
mula T(z[j], z[j + 1]) defines the transition relation. Obviously, the formula
1) (z[0]) is equivalent to the state formula Iy(z[0]), which describes the initial
state (lo,vo) of the program M. Let ' = s{,s},...,s} ;, where s, = (I}, [v}])
be a k-path in M'. In [TYO01] it has been shown that the region equivalence
is a bisimulation relation. Since M and M’ are bisimilar, it follows that there
exists a k-path m = sg, s1,...,8¢_1 in M, where s; = (l;,v;) such that I; = [}
and v; € [v}]. Therefore, we can unfold M up to step k, in a manner similar to
the unfolding of M', such that [M], and [M'], are equisatisfiable. O

Lower bounds for the length k of counterexamples can be found by examining
the structure of the Biichi automaton for a given LTL(C) formula. A lower
bound is given by the length of the shortest path from the initial state to a
final /accepting state of the automaton. For a timed automaton M with ¢ the
largest constant appearing in the guards and invariants of M, and ¢ the number

of clocks, an upper bound for £ is given by

| < 20(tlog(er) . 90(¢l)

where 20(*108(c")) denotes the number of states in the region graph of M [Alu99].
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Corollary 1 Let M be a timed automaton with ¢ the largest constant appear-
ing in the guards and invariants of M, and ¢ the number of clocks. Further, let
¢ be a formula in LTL(C). If k = 20(1e8(ct) . 200¢D) then M |= ¢ iff [M, 4], is

unsatisfiable.
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Chapter 5

BMC for Networks of

Timed Automata

Complex systems are modeled as networks of timed automata, that is, paral-
lel composition of timed automata. Given two timed automata A; and A,, for
defining synchronization on same events, we assume two finite alphabets 3; and
Y5, whose elements are used to label the transitions of Ay, respectively As. An
edge of an automaton over an input alphabet ¥ is now a tuple e = (l,a, g,r,1).
The product A;]|Ay is defined in the obvious way [Alu99]. The locations of
the product automaton are pairs of locations of its constituent automata. The
invariant of a new location consists of the conjunction of the invariants of the
component locations. Symbols that belong to both alphabets are used for syn-

chronization and must be taken simultaneously by both automata.

Definition 7 ([Alu99]) Consider two timed automata with disjoint sets of
clocks Ay = (L1,19,%1, Cly, Ey, Invy) and Ay = (Lo,19, %5, Cla, Es, Invy). The
product automaton Ay || A is the timed automaton (L; x Lo, (19,19), £1UX,, Cl1 U
Cly, Inv, E), where Inv(l1,1l2) = Inv(ly) A Inv(l2), and the edges are defined as

follows:

1. Fora € Z1ﬂz27 <(l17l2)7aagl A927T1UT27(ZI17ZI2)> € Biff <l17a7.ql:7‘17ll1> €
Ey and (ls,a,g2,72,15) € Es.

2. For a € ¥y \ o, ((l1,12),a,g,r,(I1,02)) € Eiff (l1,a,9,7,1l}) € E; and
lo € Lo.
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Figure 5.1: Product construction for timed automata.

3. For a € X9\ X1, ((l1,12),a,g,7,(I1,1,)) € E iff (I,a,9,7,1}) € Ey and
li € Ly.

Figure 5.1 illustrates two timed automata together with the resulting product
automaton.

To encode the system A;||As into a C-program, as described in Chapter 4
using Definition 2, the product automaton must be constructed first. For net-
works consisting of a large number of components, this leads to an exponential
blowup in the number of resulting locations and transitions, and therefore also
in the length of the Boolean constraint formulas. Here, we propose a method
for encoding a network of timed automata into a C-program in a compositional
way, which does not require the construction of the product automaton.

For a timed automaton A with set of clocks CI the formula fiz(A) is used to

encode “inactivity”, that is, the fact that A does not perform any transition.

fir(A) := (at' = at A /\ ' =ux).
zeCl
Definition 8 Consider two timed automata A, = (Ly,19,%,, Cly, Ey, Inv,)
and Ay = (L9,19,%,, Cly, By, Invy). Further, let (I;,T;) be the program in
Prg(C(V; UV/)) corresponding to A;, where V; = {at;, act;} U Cl; and V; =
{at'} U CI:, and the variables act; are interpreted over ¥;, for i = 1,2. The
system Aj]|As can be encoded into a (I, T) program in Prg(C(V U V")) over the

set V=Vi UV, and V' = V] UV} in a compositional way, as follows.
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e Initial state (19,19)

IS::Il/\IQ:(atlzl?/\atgzlg/\ /\ z=0A /\ y=0)
ze Cly y€eCla

e State transition step corresponding to e; = (l1,a,g1,71,l}) € Ey

aty =l ANath =1 Ngi A /\zeCh ' =z2ANacti =alacty =a
iffae ¥ UX,

aty =L ANath =11 ANgi A /\zEC’ll ' =zAact; = aA fir(As)
iff a € 21 \ 22

T*(er) =

where z = 0 if z € r1; otherwise z = z. The above formula is equal to

TS( ) Tl(el)/\actgza iff aeX U,
e1) = -
' Ti(ed) A fiz(As) iff a €T\ Dy

where T (e1) encodes e; independent of A, as illustrated in Definition 2.

e State transition step corresponding to es = (lz, a, g2,72,15) € Ey

TS( ) Tz(eg)/\actlza iff (IGZlUZQ
€ = ~
? Ty(es) A fiz(Ay) iff a€ Ty \ 3,
e Delay steps
delay® = 30> 0. ( A (at =1 = Inv(l)(CI, U C1}))

lelnv(A)UInv(Az)
A (at} = at1) A (athy = ats)

N ANCEE ) WA (y’:y+5))

zeCl yeCls
where at = aty if | € Inv(A4;); otherwise at = ats. The formula delay®
in quantifier-free form is equivalent to delay, A delay, A (di = da), where
delay, and delay, describe the delay steps of A; respectively A also in
quantifier-free form. The conjunct dy = d» is used to relate the clock
differences from delay, and delay,. d; denotes the clock difference z} — x;
for x; € CI; with z} —2; > 0. Such a clock difference always exists in

delay; after quantifier elimination.

e Transition relation 7°*

T5 = (( Q) T*(er) @ fix(A1) A (K Ts(ez)e@ﬁz(Az)))@delays

e1€E; ea€Fs
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The network consisting of the timed automata A; and Ay from Figure 5.1,

for example, is defined as a program over the set of variables
V = {at1, ats, acty, acta, at', aty, z,y,z',y'},
where fiz (A1) = (at] = aty Az’ = ) and fiz(A2) = (ath = at2 Ay’ = y).

IS

(at; =0Aata =0Ax=0Ay =0)
T° = |[(aty =0Aaty =1A2' =0Aact; =aAacty =a) @

(at1 =0Aaty =2Az =1Ax =z Aacti =bAfiz(A2)) ® fiz(Ar1)] A
[(ata =0Aaty, =1Ay=2Ay =yAacts =aAact; =a) ®

(ata = 0Aath = 2Ny = yAacty = cAfiz(41)) @ fix(As)]| ®
(at) = aty1 Aaty = ata Az’ —2 > 0Ny —y=1"—1x)

Theorem 4 (BMC for Networks of Timed Automata) Given two timed
automata with disjoint set of clocks A; = (L;,1?,%;, Cl;, E;, Inv;), for i = 1,2.
Let M* = (I*,T*) be the program corresponding to the network A;||As as given
in Definition 8, and M = (I, T') be the program encoding the product automa-
ton A; x A,y according to Definition 2. Then for a k € IV, the kth unfoldings
of M?® and M are equisatisfiable, that is [M*], = [M],.

Proof. (<) Assume [M], = Io(x[0]) A /\f;& T;j(z[j],z[j + 1]) as given in
Definition 4. Let us first consider only state transition steps for M. We prove
by induction over k that if [M], is satisfiable then so [M°],.

Basis case k=0. By Definition 7 (product construction)

[M], = Io([0]) = (at0] = (0,19) A A\ w0l =0 A A 0] =0)
z; €Cl yi €Cla

This formula can be transformed into an equisatisfiable formula of the form

(atr[0] =19 A atz[0] =19 A\ @l0]=0 A A wil0]=0)
@i €Ch :€Cla
which by Definition 8 equals I*. Thus, Iy(z[0]) and I§(z[0]) are equisatisfiable.
Induction hypothesis. For j <k, [M?]; is satisfiable if [M]; is satisfiable.
Induction step j=k. We show that /\;?:0 T} is satisfiable if /\f:0 T; is sat-
isfiable. By induction hypothesis it follows that /\f;é T and /\f;ol T; are eq-
uisatisfiable. To have a closer look at T}, we consider a state transition cor-

responding to an edge e = ((I1,12),a,g,r,(I1,15)) € E. We distinguish three
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cases: A; and A, synchronize on a, only A; (A,) performs a, or the transi-
tion from (Iy,12) to (I7,15) is not allowed. In the first case e is obtained from

er1 = (l1,a,91,m1,1},) € Ey and es = (la,a,g2,72,15,) € Es, and we have

Te = (atlk] = (I1,12) A actlk]=a A g A atlk+1] = (1},1) A
N zilk+1=z A N wilk+1]=2)
z; € Cly y: € Cla

where g = g1 Ago, and z; = 0 if z; € 1 U re; otherwise z; = x;[k]. From
atlk] = (I1,12) (atlk + 1] = (I},13), act[k] = a) satisfiable it follows atq[k] =
LiNato[k] = 1o (ati[k + 1] = 1] Aato[k + 1] = 1}, acti[k] = aAactz[k] = a)
satisfiable. Therefore, the formulas T%(e;) and T®(ey) are both satisfiable in
step k, and by Definition 8 the formula 7} is satisfiable. In the second case

a € E1\22; €1 = <l17a7glaT17lll7>7 and

Te = (atlk] = (I1,12) A actlk]=a A g A atlk+1] = (1}, 12) A
N zilk+1=z A N wilk+1]=2)
z;€Cly y: € Cla

where g = g1, and z; = 0 if ; € ry; otherwise z; = x;[k]. By an argument
similar to that of the first case, 7% (e;) is satisfiable in step k. Since Ay does not
perform any transition, fiz(A,) is satisfiable, and therefore T} are satisfiable.
In the third case, if the transition e cannot be taken, the formulas fiz(A;) and
fiz(As), and therefore T, are satisfiable.

(=) Follows by a similar argumentation.

Now, let us consider delay steps. According to Definition 2, the delay steps of

the system A; x Ao (after quantifier elimination) are encoded as

delay = N (at =1= Inw(1)(CIy U ClY))
lelnv(Ay X As)
Aat' =at Az —a21 >0 A /\ y —y=a —m
yeCLUCI:\{z1}

The above formula is equivalent to

delay = /\ (aty =1 = Inv(1)(CI})) A
L€ Inu(Ar)

N (ata =1= Inu(1)(Cl3)) A
l€ Inu(As)
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ati = at; A ath = ata A
p—x1 >0 A xh—22 >0 A

/\ y’fy:mll —x1 A
yECll\{zl}
N v -y=1-m
y€CCls

!

which is equal to delay, A delay, A (z} —z1 =z} —x5). Thus, by Definition 8,
delay = delay®.
O
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Chapter 6

Discussion and Conclusion

We presented a bounded model checking procedure (BMC) for timed automata
and linear temporal logic with real-valued clock constraints. The main contribu-
tion is a complete BMC algorithm for timed automata, which is compositional
in that Boolean constraint formulas encoding complex systems can be obtained
by Boolean combinations of the encoding of the components. A direct encoding
of the product automaton would cause an exponential blow up in the length
of the resulting Boolean constraint formula. The completeness proof can be
adapted to any systems with a finite bisimulation. Further, we give lower and
upper bounds for the length k£ of counterexamples, that depend on the struc-
ture of the Biichi automaton of the given formula, and the region automaton
corresponding to the timed automaton.

The main problem of the BMC approach is to come up with efficient al-
gorithms for solving the satisfiability problem for Boolean constraint formulas.
Specialized data structures for timed automata, such as difference bounded ma-
trices (DBMs) [Dil89], clock difference diagrams (CDDs) [LPWY99], or differ-
ence decision diagrams (DDDs) [MLAH99], cannot be applied directly for BMC,
since the generated formulas contain clock constraints of the form ' —2z = y' —y,
as needed for encoding the delay steps. It is unclear if even recently developed
constraint solvers, such as the satisfiability checker for difference logic, pre-
sented in [MNAMO02], can deal with this kind of constraints. On the other
hand, general-purpose theorem proving, such as PVS [ORS92], which uses a

combination of BDDs [Bry86] and linear arithmetic reasoning based on loop
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residue [Sho81], is not very efficient. For example, finding a counterexample of
length k£ = 2 in the (modified) train gate controller protocol requires around
70 s, and for £ = 3 around 8500 s. Recently, new techniques for checking
satisfiability of Boolean constraint formulas have been developed, by combin-
ing SAT solvers with domain-specific decision procedures based on lemmas on
demand [dMRS02, BDS02]. We have implemented a prototypical satisfiability
solver [IMRS02] that combines the SAT solver Chaff [MMZ*01] with the deci-
sion procedures ICS [FORSO01]. The core of the solver is a refinement algorithm
based on lazy theorem proving. In each refinement step, the Boolean satisfia-
bility checker Chaff is used to suggest candidate assignments. Then ICS checks
whether such a Boolean assignment determines a consistent assignment for the
corresponding set, of constraints. Whenever such a consistency check fails, the
current Boolean formula is refined by adding a Boolean analogue of this incon-
sistency. The SAT solver is restarted, and a new candidate assignment for the
refined formula is suggested.

We have performed some initial experiments, using Fischer’s mutual exclu-
sion protocol [Lam87] with a slight modification of the timing constraints as
a benchmark. We encoded systems of n = 2,...,10 processes as a Boolean
constraint formula in a compositional way, as described in Chapter 5. On a
Pentium II, 450 MHz, for 2 processes we found a counterexample of length 3
(shortest counterexample) in 0.23 s, of length 5 in 0.85 s, and of length 10 in
6.12 s. For 5 processes we obtain, for £ = 5, 1.34 s, and for k£ = 10, 16.11 s.
For a system consisting of 10 processes, and a bound k£ = 10 a counterexample
was found in 210.8 s. Although in an initial phase, the performed experiments
show that BMC is a promising technique for verifying timed systems. Errors
in larger systems for which conventional timed model checking tools fail or are
inefficient can be found using BMC.

Lazy theorem proving and lemmas on demands are relatively new concepts,
and the underlying implementations improve on a daily basis. Currently, we
perform our experiments also with both a new implementation of lemmas on
demand and CVC [BDS00], and are in the process of evaluating and comparing
both approaches.
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