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Abstra
tGiven a timed automatonM , a linear temporal logi
 formula ', and a bound k,bounded model 
he
king for timed automata determines if there is a falsifyingpath of length k to the hypothesis that M satis�es the spe
i�
ation '. Thisproblem 
an be redu
ed to the satis�ability problem for Boolean 
onstraint for-mulas over linear arithmeti
 
onstraints. We show that bounded model 
he
kingfor timed automata is 
omplete, and we give lower and upper bounds for thelength k of 
ounterexamples. Moreover, we de�ne bounded model 
he
king forsystems of timed automata in a 
ompositional way.
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Chapter 1Introdu
tionTimed automata [AD94℄ are state-transition graphs augmented with a �niteset of real-valued 
lo
ks. The 
lo
ks pro
eed at a uniform rate and 
onstrainthe times at whi
h transitions may o

ur. Given a timed automaton and aproperty expressed in a timed logi
 su
h as TCTL [ACD90℄ or T� [HNSY94℄,model 
he
king answers the question of whether or not the timed automatonsatis�es the given formula. The fundamental graph-theoreti
 model 
he
kingalgorithm by Alur, Cour
oubetis, and Dill [ACD90℄ 
onstru
ts a �nite quotient,the so-
alled region graph, of the in�nite state graph. Algorithms dire
tly basedon the expli
it 
onstru
tion of su
h a partition are, however, unlikely to per-form eÆ
iently in pra
ti
e, sin
e the number of equivalen
e 
lasses of states ofthe region graph grows exponentially with the largest time 
onstant and thenumber of 
lo
ks that are used to spe
ify timing 
onstraints. Symboli
 model
he
king algorithms are obtained by 
hara
terizing regions as Boolean 
ombi-nations of linear inequalities over 
lo
ks [HNSY94℄. Based on these algorithms,tools for verifying timed automata, su
h as Uppaal [LPY97℄, Kronos [DOTY96℄,HyTe
h [HHWT97℄, and Tempo [Sor01℄, have been developed.As an alternative to 
lassi
al model 
he
king, the te
hnique of boundedmodel 
he
king has been re
ently introdu
ed [CBRZ01℄. Given a system Mmodeled as a state ma
hine, a temporal logi
 spe
i�
ation ', and a bound k,the bounded model 
he
king (BMC) problem 
onsists in sear
hing for 
ounterex-amples of length k to the model 
he
king problem M j= '. The BMC problemfor �nite state models 
an be redu
ed to a propositional satis�ability problem,3



and o�-the-shelf propositional satis�ability (SAT) 
he
kers are used to 
onstru
t
ounterexamples from satisfying assignments to the propositional variables. Ithas been demonstrated that BMC is in many 
ases more e�e
tive in falsify-ing designs than traditional model 
he
king te
hniques [CBRZ01, CFF+01℄.In [dMRS02℄ the BMC paradigm has been extended to programs over in�nitestate spa
e, and LTL formulas augmented with a de
idable set of 
onstraints.For an in�nite state system M , a linear temporal logi
 formula with 
onstraints', and a bound k, it has been illustrated how a Boolean 
onstraint formula,[[M;'℄℄k, 
an be 
onstru
ted that is satis�able if and only if there is a 
oun-terexample of length k for the model 
he
king problem M j= '. BMC forin�nite state systems is sound, and for invariant properties also 
omplete, butin
omplete for the entire LTL logi
.The main 
ontribution here is to show that BMC for timed automata isindeed 
omplete for all LTL formulas with 
lo
k 
onstraints. We des
ribe howa timed automaton 
an be dire
tly en
oded into a Boolean 
onstraint formula,without 
onstru
ting the 
orresponding region graph. Our approa
h is 
om-positional, in that Boolean 
onstraint formulas en
oding 
omplex systems 
anbe obtained by Boolean 
ombinations of the en
oding of the 
omponents. Ob-viously, this 
ompositional approa
h redu
es the size of the generated formula
onsiderably. Moreover, we give lower and upper bounds for the length k of
ounterexamples that depend on the size of the LTL formula and the size of theregion graph 
orresponding to the given timed automaton.The paper is stru
tured as follows. In Chapter 2 we provide some ba
kgroundinformation on Boolean 
onstraints. Chapter 3 reviews the basi
 notions oftimed automata. Chapter 4 presents the details of BMC for timed automatatogether with the 
ompleteness results. Lower and upper bounds for the lengthk of 
ounterexamples are given. Chapter 5 illustrates BMC for networks, that is,parallel 
omposition of timed automata, and shows how 
omplex systems 
an been
oded into a Boolean 
onstraint formula in a 
ompositional way, without �rst
omputing the produ
t automaton of the 
omponents. Finally, in Chapter 6 wepresent some experimental results using Fis
her's mutual ex
lusion proto
ol asa ben
hmark, and draw 
on
lusions.
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Chapter 2Ba
kgroundA set of variables V := fx1; : : : ; xng is said to be typed if there are nonemptysets D1 through Dn and a type assignment � su
h that �(xi) = Di. For a set oftyped variables V , a variable assignment is a fun
tion � from variables x 2 Vto an element of �(x).Let V be a set of typed variables and L be an asso
iated logi
al language.A set of 
onstraints in L is 
alled a 
onstraint theory C if it in
ludes 
onstantstrue, false and if it is 
losed under negation; a subset of C of 
onstraints withfree variables in V 0 � V is denoted by C(V 0). For 
 2 C and � an assignment forthe free variables in 
, the value of the predi
ate [[
℄℄� is 
alled the interpretationof 
 w.r.t. �. Hereby, [[true℄℄� ([[false ℄℄�) is assumed to hold for all (for no) �,and [[:
℄℄� holds i� [[
℄℄� does not hold. A set of 
onstraints C � C is said tobe satis�able if there exists a variable assignment � su
h that [[
℄℄� holds forevery 
 in C; otherwise, C is said to be unsatis�able. Furthermore, a fun
tionC-sat(C) is 
alled a C-satis�ability solver if it returns ? if the set of 
onstraintsC is unsatis�able and a satisfying assignment for C otherwise.For a given theory C, the set of Boolean 
onstraints Bool(C) in
ludes all 
on-straints in C and it is 
losed under 
onjun
tion ^ , disjun
tion _ , and negation:: The notions of satis�ability, in
onsisten
y, satisfying assignment, and satis-�ability solver are homomorphi
ally lifted to the set of Boolean 
onstraints inthe usual way. If V = fp1; : : : ; png and the 
orresponding type assignment �(pi)is either true or false, then Bool(ftrue; falseg [ V ) redu
es to the usual notionof Boolean logi
 with propositional variables fp1; : : : ; png.5



Chapter 3Timed AutomataWe review some basi
 notions of transition systems and timed automata. Timedautomata, as introdu
ed by Alur, Cour
oubetis, and Dill [ACD90℄, are state-transition graphs augmented with a �nite set of real-valued 
lo
ks. Given a setof 
lo
ks Cl = fx1; : : : ; xng, a 
lo
k-valuation fun
tion v : Cl ! IR+0 assignsa (positive) real value to ea
h 
lo
k. Clo
k 
onstraints 
ompare 
lo
k valueswith rational 
onstants. Given a set Cl of 
lo
k variables (or simply 
lo
ks),x1; x2 arbitrary 
lo
ks, 
 2 IQ�0, and � 2 f�;�; <;>;=g, the set � of 
lo
k (ortiming) 
onstraints over Cl is de�ned by the grammarg := tt j ff j x1 � 
 j x1 � x2 � 
 j g1 ^ g2:For a positive integer d, �(d) is the �nite subset of all timing 
onstraints x � 
,x � y � 
, where x; y 2 Cl , � 2 f<;�;=;�; >g and 
 2 f0; : : : ; dg. Clo
k
onstraints over Cl are interpreted with respe
t to 
lo
k-valuation fun
tionsv : Cl ! IR+0 . For a 
lo
k-valuation fun
tion v and a 
lo
k 
onstraint g over Cl ,we write v j� g (to be read as \v satis�es g") to denote that a

ording to thevalues given by v the 
onstraint g evaluates to true. Formally, v j� g is de�nedindu
tively over the synta
ti
 stru
ture of g, where x1; x2 2 Cl are arbitrary
lo
ks, 
 2 IQ�0, and � 2 f�;�; <;>;=g:v j6�ff v j�tt v j�x1 � x2 � 
 i� v(x1)� v(x2) � 
v j�x1 � 
 i� v(x1) � 
 v j� g1 ^ g2 i� v j� g1 and v j� g2For Æ 2 IR�0, v+ Æ denotes the 
lo
k valuation that maps ea
h 
lo
k x 2 Clto the value v(x) + Æ. For a 
lo
k x 2 Cl , v[x := 0℄ denotes the 
lo
k valuation6



l0y � 1
l1 l2

x := 0x := 0 y > xy := 0 x � yFigure 3.1: Example of a timed automaton (the simple example).for Cl that maps x to the value 0 and leaves all the other 
lo
k values un
hanged.A timed automaton S is a tuple hL; l0;Cl ; E; Invi, where L is a nonempty�nite set of lo
ations, l0 � L is the initial lo
ation, and Cl is a �nite set of
lo
ks. Inv : L ! � assigns a set of downward 
losed 
lo
k 
onstraints toea
h lo
ation L; the elements of Inv(l) are the invariants for lo
ation l. E �L�P(�)�P(Cl )�L is a �nite set of edges. An edge e = hl; g; r; l0i representsa transition from lo
ation l to lo
ation l0. A transition may be �red only if thetiming 
onstraint (guard of the transition) g holds with respe
t to the 
urrentvalue of the 
lo
ks, and if the invariant of the target lo
ation is satis�ed withrespe
t to the modi�ed value of the 
lo
ks. Firing a transition does not only
hange the 
urrent lo
ation but also resets the 
lo
ks in r to 0.A timed automaton with three lo
ations l0, l1, l2 and two 
lo
ks x, y isdisplayed in Figure 3.1. The initial lo
ation is l0, and transitions are de
oratedwith both timing 
onstraints and 
lo
k resets su
h as x := 0. The invariant forlo
ation l0 is y � 1. Timing 
onstraints that are true are omitted.Alur, Cour
oubetis, and Dill [ACD90℄ introdu
e the fundamental notion of
lo
k regions, whi
h partition the spa
e of possible 
lo
k evaluation for a timedautomaton into �nitely many regions. For a timed automaton S with 
lo
ks Cland largest 
onstant d, o

urring in any timing 
onstraint of S , a 
lo
k region isa set � of 
lo
k valuations, su
h that for all timing 
onstraints g 2 �(d) and forany two v1; v2 2 � it is the 
ase that v1 j� g if and only if v2 j� g. In this 
ase wewrite v1�S v2. We will use [v℄ to denote the 
lo
k region to whi
h v belongs.A state of a timed automaton S is a pair (l; v) where l 2 L is a lo
ation ofS and v a 
lo
k valuation for Cl . An initial state is of the form (l0; v0) wherel0 denotes the initial state of S and v0 maps all 
lo
ks in Cl to 0. We extendthe satis�ability relation for 
lo
k 
onstraints on states, as follows: for a state7



(l; v) and a timing 
onstraint g, (l; v) j� g i� v j� g. A timed step is either adelay step, where time advan
es by some positive real-valued Æ, or an instan-taneous state transition step. For a timed automaton S = hL; l0;Cl ; E; Invi,and Æ � 0, we say that the state (l; v + Æ) is obtained from (l; v) by a de-lay step (l; v) Æ�!(l; v + Æ), if the invariant 
onstraint v + Æ j� Inv(l) holds. Astate transition step (l; v) g;r�!(l0; v0) o

urs if there exists an edge hl; g; r; l0i, andv j� g, v0 = v[r := 0℄, and v0 j� Inv(l0). The union of delay and state tran-sition steps de�nes the timed transition relation ) of a timed automaton S .Now, a path � is an in�nite sequen
e of states (l0; v0); (l1; v1); : : : su
h that(li; vi))(li+1; vi+1);8i � 0.
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Chapter 4System Veri�
ationIn presenting the details of BMC for timed automata together with the 
om-pleteness results, we assume as given a solvable 
onstraint theory C that in-
ludes the 
lo
k 
onstraints �, and 
onstraints of the form x0 � x = y0 � y,where x; x0; y; y0 2 Cl are 
lo
k variables. To make this paper as self-
ontainedas possible, we re
all some notions and de�nitions from [dMRS02℄. For the sim-pli
ity of the presentation we 
onsider only timed automata that are nonzeno.A 
omplete BMC pro
edure for timed automata, however, requires an expli
iten
oding of nonzenoness su
h as, for example, the one given in [MRS02℄.De�nition 1 (C-Programs) Typed variables in V := fx1; : : : ; xng are also
alled state variables, and a program state is a variable assignment over V . Apair hI; T i is a C-program over V if I 2 Bool(C(V )) and T 2 Bool(C(V [ V 0)),where V 0 is a primed, disjoint 
opy of V . I is used to restri
t the set of initialprogram states, and T spe
i�es the transition relation between states and theirsu

essor states. The set of C-programs over V is denoted by Prg(C(V )).The semanti
s of a program P is given in terms of a transition system M in theusual way, and, by a slight abuse of notation, we sometimes write M for boththe program and its asso
iated transition system.A timed automaton S = hL; l0;Cl ; E; Invi 
an easily be des
ribed in terms ofa program with linear arithmeti
 
onstraints over states (at ; x1; : : : ; xn), whereat is interpreted over the set L of lo
ations and the 
lo
k variables x1; : : : ; xn 2Cl are interpreted over IR+0 . 9



De�nition 2 Given a timed automaton S = hL; l0;Cl ; E; Invi, with Cl =fx1; : : : ; xng the set of 
lo
ks. S 
an be de�ned as a hI; T i program in Prg(C(V ))over the set V = fat ; x1; : : : ; xn; at 0; x01; : : : ; x0ng as follows.� De�nition of the initial state l0I := (at = l0 ^ x1 = 0 ^ : : : ^ xn = 0):� De�nition of a state transition step 
orresponding to e = hl; g; r; l0i 2 E~T (e) := (at = l ^ g ^ x01 = z1 ^ : : : ^ x0n = zn ^ at 0 = l0)where zi = 0 if xi 2 r; otherwise zi = xi.� De�nition of delay steps (Inv(S) is the set of all lo
ations that have aninvariant di�erent from true.)delay := 9Æ � 0: ( ^l2Inv(S)(at = l ) Inv(l)(x01; : : : ; x0n))^ (at 0 = at)^ (x01 = x1 + Æ) ^ : : : ^ (x0n = xn + Æ)):The state formula Inv(l)(x01; : : : ; x0n) is obtained from the invariant of lo-
ation l, Inv(l), by repla
ing the variables x1; : : : ; xn in the 
onstraints ofInv(l) by the primed variables x01; : : : ; x0n.� De�nition of the transition relation T (
 denotes the ex
lusive or 
onne
-tive) T := 
e2E ~T (e)
 delay :The timed automaton depi
ted in Figure 3.1, for example, is expressed interms of the program hI; T i over states (at ; x; y), where at is interpreted overthe set of lo
ations fl0; l1; l2g, and the 
lo
k variables x; y are interpreted overIR+0 . Initially, the program is in lo
ation l0 and the value of the 
lo
ks x; y isequal to 0. The transitions are en
oded by a 
onjun
tion of 
onstraints over the
urrent state variables at ; x; y and the next state variables at 0; x0; y0.I(at ; x; y) := (at = l0 ^ x = 0 ^ y = 0)T (at ; x; y; at 0; x0; y0) := (at = l0 ^ x0 = 0 ^ y0 = y ^ at 0 = l0)
(at = l0 ^ x0 = 0 ^ y0 = y ^ at 0 = l1)
10



(at = l0 ^ y > x ^ x0 = x ^ y0 = y ^ at 0 = l1)
(at = l1 ^ y0 = 0 ^ x0 = x ^ at 0 = l0)
(at = l1 ^ x � y ^ x0 = x ^ y0 = y ^ at 0 = l2)
delay(at ; x; y; at 0; x0; y0)The delay steps are en
oding asdelay(at ; x; y; at 0; x0; y0) :=9Æ � 0: ((at = l0 ) y0 � 1) ^ (at0 = at) ^ (x0 = x+ Æ) ^ (y0 = y + Æ)):The above formula is not 
ontained in Bool(C), sin
e the de�nition of delay
ontains an existential quanti�er. After performing quanti�er elimination weobtaindelay(at ; x; y; at 0; x0; y0) :=((at = l0 ) y0 � 1) ^ (x0 � x � 0) ^ (y0 � y = x0 � x)^ (at 0 = at)):The formulas of the 
onstraint linear temporal logi
 LTL(C) are linear-time tem-poral logi
 formulas with the usual \until" and \release" operators, and 
on-straints 
 2 C as atoms. Note that only 
onstraints in � are allowed.' ::= true j false j 
 j '1 ^'2 j '1 _'2 j '1U '2 j '1R '2The derived operators F' = trueU ' and G' = falseR ' denote \eventually'" and \globally '" . Our logi
 does not 
ontain a next-step operator. Themain interest in removing the next-step operator stems from the fa
t that wedo not want to distinguish between one delay step of duration, say, 1 and twosubsequent delay steps of durations 2=5 and 3=5, sin
e these tra
es are 
on-sidered to be observationally equivalent. Logi
s without an expli
it next-stepoperator have also been 
onsidered, for example, by Alur [Alu91℄, by Henzinger,Ni
ollin, Sifakis, and Yovine [HNSY94℄, and by Dams [Dam96℄. Given a pro-gram M 2 Prg(C) and a path � in M , the satis�ability relation M;� j= ' foran LTL(C) formula ' is given in the usual way with the notable ex
eption of the
ase of 
onstraint formulas 
. In this 
ase, M;� j= 
 if and only if 
 holds in thestart state of �.De�nition 3 (Semanti
s of LTL(C)) Given a program M 2 Prg(C(V )) overthe set of typed variables V , a path � in the transition system asso
iated with11



M , and a formula ' 2 LTL(C(V )), the satis�ability relationM;� j= ' is de�nedindu
tively over the syntax of '.M;� j= trueM;� j== falseM;� j= 
 i� �(0) j� 
M; � j= '1 ^'2 i� M;� j= '1 and M;� j= '2M;� j= '1 _'2 i� M;� j= '1 or M;� j= '2M;� j= '1U '2 i� 9i:M; �i j= '1 and 8j < i:M; �j j= '2M;� j= '1R '2 i� 8i:M; �i j= '1 or 9j < i:M; �j j= '2Assuming the notation above, the C-model 
he
king problem M j= ' holds i�for all paths � = s0; s1; : : : in M with s0 2 I it is the 
ase that M;� j= '.The following lemma states that the logi
 LTL(C) preserves bisimulation.Lemma 1 Given a program M with a �nite bisimulation M 0 (i.e., M �M 0),and a formula ' 2 LTL(C); then M j= ' i� M 0 j= '.Proof. The proof follows by indu
tion over the stru
ture of '. The 
ases' = true and ' = false are trivial.' = 
 Assume M;� j= ' for all paths � = (l0; v0); (l1; v1); : : : in M . Thenby De�nition 3 M;� j= 
 i� (l0; v0) j� 
. From (l0; v0) j� 
 by the de�nition of
lo
k regions it follows that (l0; [v0℄) j� 
, where [v0℄ denotes the 
lo
k region ofM with v0 2 [v0℄. Again by De�nition 3, we obtain that M 0; [�℄ j= 
, where[�℄ = (l0; [v0℄); (l1; [v1℄); : : :.' = '1U '2 Assume M;� j= ' for all paths � = (l0; v0); (l1; v1); : : : in M .Then, by De�nition 3 there exists i � 0 su
h that M;�i j= '1 and M;�j j= '2,8j < i. From the fa
t that M and M 0 are bisimilar, we 
an 
onstru
t a path�0 = (l0; [v0℄); (l1; [v1℄); : : :, su
h that vi 2 [vi℄ for all i � 0. By indu
tion hypoth-esis, M 0; �0i j= '1 and M 0; �0j j= '2, and therefore by De�nition 3, M 0; �0 j= '.Sin
e � � �0 for all paths � in M and �0 in M 0, it follows that M 0 j= '.' = '1R '2 Assume M;� j= ' for all paths � = (l0; v0); (l1; v1); : : : in M .Then, by De�nition 3 for all i � 0, M;�i j= '1 or there exists j < i su
h thatM;�j j= '2. From the fa
t that M and M 0 are bisimilar, we 
an 
onstru
t a12



path �0 = (l0; [v0℄); (l1; [v1℄); : : :, su
h that vi 2 [vi℄ for all i � 0. By indu
tionhypothesis, M 0; �0i j= '1 for all i � 0, or M 0; �0j j= '2 for some j < i. Thus,by De�nition 3, M 0; �0 j= '. Sin
e � � �0 for all paths � in M and �0 in M 0, itfollows that M 0 j= '.' = '1 ^ '2 Follows by indu
tion hypothesis.' = '1 _ '2 Follows by indu
tion hypothesis. 2Now, given a bound k, a programM 2 Prg(C(V )) and a formula ' 2 LTL(C)we 
onsider the problem of 
onstru
ting a formula [[M;'℄℄k 2 Bool(C(V )), whi
his satis�able if and only if there is a 
ounterexample of length k for the C-model
he
king problem M j= '. This 
onstru
tion pro
eeds as follows.1. De�nition of [[M ℄℄k as the unfolding of the program M up to step k frominitial states (this requires k disjoint 
opies of V ).2. Translation of :' into a 
orresponding B�u
hi automaton B:' whose lan-guage of a

epting words 
onsists of the satisfying paths of :'.3. En
oding of the transition system for B:' and the B�u
hi a

eptan
e 
on-dition as a Boolean formula, say [[B℄℄k.4. Forming the 
onjun
tion [[M;'℄℄k := [[B℄℄k ^ [[M ℄℄k.5. A satisfying assignment for the formula [[M;'℄℄k indu
es a 
ounterexampleof length k for the model 
he
king problem M j= '.De�nition 4 (En
oding of C-Programs) The en
oding [[M ℄℄k of the kthunfolding of a C-program M = hI; T i in Prg(C(fx1; : : : ; xng)) is given by theBoolean 
onstraint formula [[M ℄℄k.I0(x[0℄) := Ihfxi 7! xi[0℄ j xi 2 V giTj(x[0℄; : : : ; x[k℄) := T hfxi 7! xi[j℄ j xi 2 V g [ fx0i 7! xi[j + 1℄ j xi 2 V gi[[M ℄℄k := I0(x[0℄)^ k�1̂j=0 Tj(x[j℄; x[j + 1℄)where fxi[j℄ j 0 � j � kg is a family of typed variables for en
oding the state ofvariable xi in the jth step, x[j℄ is used as an abbreviation for x1[j℄ : : : ; xn[j℄, andT hxi 7! xi[j℄i denotes simultaneous substitution of the xi by xi[j℄ in formula T .13



A two-step unfolding of the simple program in Figure 3.1, for example, is en-
oded by [[simple℄℄2 := I0 ^ T0 ^ T1 (�).I0 := (at [0℄ = l0 ^ x[0℄ = 0 ^ y[0℄ = 0)T0 := (at [0℄ = l0 ^ x[1℄ = 0 ^ y[1℄ = y[0℄ ^ at [1℄ = l0)
(at [0℄ = l0 ^ x[1℄ = 0 ^ y[1℄ = y[0℄ ^ at [1℄ = l1)
(at [0℄ = l0 ^ y[0℄ > x[0℄ ^ x[1℄ = x[0℄ ^ y[1℄ = y[0℄ ^ at [1℄ = l1)
(at [0℄ = l1 ^ y[1℄ = 0 ^ x[1℄ = x[0℄ ^ at [1℄ = l0)
(at [0℄ = l1 ^ x[0℄ � y[0℄ ^ x[1℄ = x[0℄ ^ y[1℄ = y[0℄ ^ at [1℄ = l2)
((at [0℄ = l0 ) y[1℄ � 1) ^ (x[1℄� x[0℄ � 0) ^(y[1℄� y[0℄ = x[1℄� x[0℄)^ (at [1℄ = at [0℄))T1 := (at [1℄ = l0 ^ x[2℄ = 0 ^ y[2℄ = y[1℄ ^ at [2℄ = l0)
(at [1℄ = l0 ^ x[2℄ = 0 ^ y[2℄ = y[1℄ ^ at [2℄ = l1)
(at [1℄ = l0 ^ y[1℄ > x[1℄ ^ x[2℄ = x[1℄ ^ y[2℄ = y[1℄ ^ at [2℄ = l1)
(at [1℄ = l1 ^ y[2℄ = 0 ^ x[2℄ = x[1℄ ^ at [2℄ = l0)
(at [1℄ = l1 ^ x[1℄ � y[1℄ ^ x[2℄ = x[1℄ ^ y[2℄ = y[1℄ ^ at [2℄ = l2)
((at [1℄ = l0 ) y[2℄ � 1) ^ (x[2℄� x[1℄ � 0) ^(y[2℄� y[1℄ = x[2℄� x[1℄)^ (at [2℄ = at [1℄))A di�eren
e between our approa
h and the BMCmethod presented in [CBRZ01℄
onsists in the en
oding of the LTL formulas. While in [CBRZ01℄ LTL formu-las are translated dire
tly into propositional formulas, we use B�u
hi automatafor the en
oding. This simpli�es substantially the notations and the proofs.The translation of linear temporal logi
 formulas into a 
orresponding B�u
hiautomaton is well studied in the literature (e.g., [GPVW95℄) and does not re-quire additional explanation. Noti
e, however, that the translation of LTL(C)formulas yields B�u
hi automata with C-
onstraints as labels. Both the resultingtransition system and the bounded a

eptan
e test based on the dete
tion ofrea
hable 
y
les with at least one �nal state 
an easily be en
oded as Boolean
onstraint formulas [dMRS02℄.De�nition 5 (En
oding of B�u
hi Automata) Let V = fx1; : : : ; xng be aset of typed variables, B = h�; Q;�; Q0; F i be a B�u
hi automaton with labels �in Bool(C), and p
 be a variable (not in V ), whi
h is interpreted over the �nite14



q0 q1at = l2at 6= l2
Figure 4.1: Automaton for F (at = l2).set of lo
ations Q of the B�u
hi automaton. For a given integer k, we obtain,as in De�nition 4, families of variables xi[j℄, p
[j℄ (1 � i � n, 0 � j � k) forrepresenting the jth state of B in a run of length k. Furthermore, the transitionrelation of B is en
oded in terms of the C-program BM over the set of variablesfp
g[V , and [[BM ℄℄k denotes the en
oding of this program as in De�nition 4.Now, given an en
oding of the a

eptan
e 
onditiona

(B)k := k�1_j=0 �p
[k℄ = p
[j℄^ n̂v=1xv [k℄ = xv [j℄^� k_l=j+1 _f2F p
[l℄ = f��the k-th unfolding of B is de�ned by [[B℄℄k := [[BM ℄℄k ^ a

(B)k.Note that, as illustrated in [dMRS02℄, whenever an LTL(C) formula does not
ontain any release operators (R-free formula) it suÆ
es to build an ordinaryautomaton over �nite words instead of a B�u
hi automaton. Every R-free for-mula 
an be translated into an automaton over �nite words that a

epts a pre�xof all in�nite paths satisfying the given formula.De�nition 6 Given an automaton B over �nite words and the notation as inDe�nition 5, the en
oding of the k-ary unfolding of B is given by [[BM ℄℄k^a

(B)kwith the a

eptan
e 
onditiona

(B)k := k_j=0 _f2F p
[j℄ = f .Consider the problem of �nding a 
ounterexample of length k = 2 to the hypoth-esis that our running example in Figure 3.1 satis�es G:(at = l2), that is, thetimed automaton never rea
hes lo
ation l2. The negated property F (at = l2)is an R-free formula, and the 
orresponding automaton B over �nite words isdisplayed in Figure 4.1. This automaton is translated, a

ording to De�nition 6,into the formula[[B℄℄2 := I(B)^T0(B)^T1(B)^ a

(B)2 . (��)15



The variables p
[j℄ and x[j℄ (j = 0; 1; 2) are used to represent the �rst threestates in a run.I(B) := (p
[0℄ = q0)T0(B) := (p
[0℄ = q0 ^:(at [0℄ = l2)^ p
[1℄ = q0)
(p
[0℄ = q0 ^ at [0℄ = l2 ^ p
[1℄ = q1)T1(B) := (p
[1℄ = q0 ^:(at [1℄ = l2)^ p
[2℄ = q0)
(p
[1℄ = q0 ^ at [1℄ = l2 ^ p
[2℄ = q1)a

(B)2 := (p
[0℄ = q1 _ p
[1℄ = q1 _ p
[2℄ = q1)The bounded model 
he
king problem [[simple℄℄2 ^ [[B℄℄2 for the simple programis obtained by 
onjoining the formulas (�) and (��). Using the BMC pro
edureover linear arithmeti
 
onstraints, one �nds the 
ounterexample(l0; x = 0; y = 0)! (l1; x = 0; y = 0)! (l2; x = 0; y = 0)of length 2. Counterexamples for timed property, su
h as G (at = l1 ) x > y),
an also be found by the BMC pro
edure.The following two theorems are due to [dMRS02℄.Theorem 1 (Soundness) Let M 2 Prg(C) and ' 2 LTL(C). If there exists anatural number k su
h that [[M;'℄℄k is satis�able, then M j== '.Theorem 2 (Completeness for Finite State Systems) LetM be a C-programwith a �nite set of rea
hable states, ' be an LTL(C) formula ', and k be a givenbound; then M j== ' implies 9k 2 IN: [[M;'℄℄k is satis�able.In general, BMC over in�nite domains is not 
omplete. Consider, for ex-ample, the model 
he
king problem M j= ' for the program M = hI; T i overthe variable V = fxg with I = (x = 0) and T = (x0 = x + 1) and the for-mula ' = F (x < 0). M 
an be seen as a one-
ounter automaton, whereinitially the value of the 
ounter x is 0, and with every transition the valueof x is in
reased with 1. Obviously, it is the 
ase that M 6j= ', but there ex-ists no k 2 IN , su
h that the formula [[M;'℄℄k is satis�able. Sin
e :' is notan R-free formula, the en
oding of the B�u
hi automaton Bk must 
ontain, byDe�nition 5, a �nite a

epting 
y
le, des
ribed by p
[k℄ = p
[0℄^x[k℄ = x[0℄ orp
[k℄ = p
[1℄^x[k℄ = x[1℄ and so on. Su
h a 
y
le, however, does not exist, sin
ethe program M 
ontains only one non
y
ling, in�nite path, where the value ofx in
reases in every step, that is, x[i+ 1℄ = x[i℄ + 1, for all i � 0.16



Theorem 3 (Completeness for Timed Automata) LetM be a timed au-tomaton de�ned as a C-program over a set of state variables V = fx1; : : : ; xng,and ' be a formula in LTL(C); thenM j== ' implies 9k: [[M;'℄℄kis satis�able.Proof. Let M 0 be the �nite region graph 
orresponding to M , also de�nedas a C-program over the set of state variables V . From M j== ', it follows byLemma 1, that M 0 j== '. Let[[M 0; '℄℄k := [[B℄℄k ^ [[M 0℄℄kbe the bounded model 
he
king problem for M 0 and '. Sin
e M 0 is �nite, byTheorem 2 there exists a k su
h that [[M 0; '℄℄k is satis�able. It remains to show,that if [[M 0; '℄℄k is satis�able then also [[M;'℄℄k is satis�able. From [[M 0; '℄℄ksatis�able it follows that [[M 0℄℄k and [[B℄℄k are satis�able. By De�nition 4[[M 0℄℄k := I 00(x[0℄)^ k�1̂j=0 T 0j(x[j℄; x[j + 1℄)where the state formula I 00(x[0℄) en
odes the initial state (l0; [v0℄), and the for-mula T 0j(x[j℄; x[j + 1℄) de�nes the transition relation. Obviously, the formulaI 00(x[0℄) is equivalent to the state formula I0(x[0℄), whi
h des
ribes the initialstate (l0; v0) of the program M . Let �0 = s00; s01; : : : ; s0k�1, where s0i = (l0i; [v0i℄)be a k-path in M 0. In [TY01℄ it has been shown that the region equivalen
eis a bisimulation relation. Sin
e M and M 0 are bisimilar, it follows that thereexists a k-path � = s0; s1; : : : ; sk�1 in M , where si = (li; vi) su
h that li = l0iand vi 2 [v0i℄. Therefore, we 
an unfold M up to step k, in a manner similar tothe unfolding of M 0, su
h that [[M ℄℄k and [[M 0℄℄k are equisatis�able. 2Lower bounds for the length k of 
ounterexamples 
an be found by examiningthe stru
ture of the B�u
hi automaton for a given LTL(C) formula. A lowerbound is given by the length of the shortest path from the initial state to a�nal/a

epting state of the automaton. For a timed automaton M with 
 thelargest 
onstant appearing in the guards and invariants of M , and t the numberof 
lo
ks, an upper bound for k is given byk � 2O(t log(
t)) � 2O(j'j)where 2O(t log(
t)) denotes the number of states in the region graph ofM [Alu99℄.17



Corollary 1 LetM be a timed automaton with 
 the largest 
onstant appear-ing in the guards and invariants of M , and t the number of 
lo
ks. Further, let' be a formula in LTL(C). If k = 2O(t log(
t)) � 2O(j'j) then M j= ' i� [[M;'℄℄k isunsatis�able.

18



Chapter 5BMC for Networks ofTimed AutomataComplex systems are modeled as networks of timed automata, that is, paral-lel 
omposition of timed automata. Given two timed automata A1 and A2, forde�ning syn
hronization on same events, we assume two �nite alphabets �1 and�2, whose elements are used to label the transitions of A1, respe
tively A2. Anedge of an automaton over an input alphabet � is now a tuple e = hl; a; g; r; l0i.The produ
t A1kA2 is de�ned in the obvious way [Alu99℄. The lo
ations ofthe produ
t automaton are pairs of lo
ations of its 
onstituent automata. Theinvariant of a new lo
ation 
onsists of the 
onjun
tion of the invariants of the
omponent lo
ations. Symbols that belong to both alphabets are used for syn-
hronization and must be taken simultaneously by both automata.De�nition 7 ([Alu99℄) Consider two timed automata with disjoint sets of
lo
ks A1 = hL1; l01;�1;Cl1; E1; Inv1i and A2 = hL2; l02;�2;Cl2; E2; Inv2i. Theprodu
t automaton A1kA2 is the timed automaton hL1�L2; (l01; l02);�1[�2;Cl1[Cl2; Inv ; Ei, where Inv(l1; l2) = Inv(l1)^ Inv(l2), and the edges are de�ned asfollows:1. For a 2 �1\�2, h(l1; l2); a; g1 ^ g2; r1[r2; (l01; l02)i 2 E i� hl1; a; g1; r1; l01i 2E1 and hl2; a; g2; r2; l02i 2 E2.2. For a 2 �1 n �2, h(l1; l2); a; g; r; (l01; l2)i 2 E i� hl1; a; g; r; l01i 2 E1 andl2 2 L2. 19



A1 0 12 a; x := 0x = 1; b A2 0 12 a; y = 2
A1 k A2(0; 0)(1; 1) (2; 0) (0; 2)a; y = 2; x := 0 b; x = 1 

Figure 5.1: Produ
t 
onstru
tion for timed automata.3. For a 2 �2 n �1, h(l1; l2); a; g; r; (l1; l02)i 2 E i� hl2; a; g; r; l02i 2 E2 andl1 2 L1.Figure 5.1 illustrates two timed automata together with the resulting produ
tautomaton.To en
ode the system A1kA2 into a C-program, as des
ribed in Chapter 4using De�nition 2, the produ
t automaton must be 
onstru
ted �rst. For net-works 
onsisting of a large number of 
omponents, this leads to an exponentialblowup in the number of resulting lo
ations and transitions, and therefore alsoin the length of the Boolean 
onstraint formulas. Here, we propose a methodfor en
oding a network of timed automata into a C-program in a 
ompositionalway, whi
h does not require the 
onstru
tion of the produ
t automaton.For a timed automaton A with set of 
lo
ks Cl the formula �x (A) is used toen
ode \ina
tivity", that is, the fa
t that A does not perform any transition.�x(A) := (at 0 = at ^ x̂2Cl x0 = x):De�nition 8 Consider two timed automata A1 = hL1; l01;�1;Cl1; E1; Inv1iand A2 = hL2; l02;�2;Cl2; E2; Inv2i. Further, let hIi; Tii be the program inPrg(C(Vi [ V 0i )) 
orresponding to Ai, where Vi = fat i; a
t ig [ Cl i and V 0i =fat 0ig [ Cl 0i, and the variables a
t i are interpreted over �i, for i = 1; 2. Thesystem A1kA2 
an be en
oded into a hI; T i program in Prg(C(V [ V 0)) over theset V = V1 [ V2 and V 0 = V 01 [ V 02 in a 
ompositional way, as follows.20



� Initial state (l01; l02)Is := I1 ^ I2 = (at1 = l01 ^ at2 = l02 ^ ^x2Cl1 x = 0^ ^y2Cl2 y = 0)� State transition step 
orresponding to e1 = hl1; a; g1; r1; l01i 2 E1~T s(e1) = 8>>>>><>>>>>: at1 = l1 ^ at 01 = l01 ^ g1 ^ Vx2Cl1 x0 = z ^ a
t1 = a^ a
t2 = ai� a 2 �1 [ �2at1 = l1 ^ at 01 = l01 ^ g1 ^ Vx2Cl1 x0 = z ^ a
t1 = a^�x (A2)i� a 2 �1 n�2where z = 0 if x 2 r1; otherwise z = x. The above formula is equal to~T s(e1) = ( ~T1(e1)^ a
t2 = a i� a 2 �1 [ �2~T1(e1)^�x(A2) i� a 2 �1 n�2where ~T1(e1) en
odes e1 independent of A2, as illustrated in De�nition 2.� State transition step 
orresponding to e2 = hl2; a; g2; r2; l02i 2 E2~T s(e2) = ( ~T2(e2)^ a
t1 = a i� a 2 �1 [ �2~T2(e2)^�x(A1) i� a 2 �2 n�1� Delay stepsdelays := 9Æ � 0: � ^l2Inv(A1)[Inv(A2)(at = l ) Inv(l)(Cl 01 [ Cl 02))^ (at 01 = at1) ^ (at 02 = at2)^ ^x2Cl1(x0 = x+ Æ) ^ ^y2Cl2(y0 = y + Æ)�where at = at1 if l 2 Inv(A1); otherwise at = at2. The formula delaysin quanti�er-free form is equivalent to delay1 ^ delay2 ^ (d1 = d2), wheredelay1 and delay2 des
ribe the delay steps of A1 respe
tively A2 also inquanti�er-free form. The 
onjun
t d1 = d2 is used to relate the 
lo
kdi�eren
es from delay1 and delay2. di denotes the 
lo
k di�eren
e x0i �xifor xi 2 Cl i with x0i � xi � 0. Su
h a 
lo
k di�eren
e always exists indelay i after quanti�er elimination.� Transition relation T sT s := �� Oe12E1 ~T s(e1)
 �x(A1)� ^ � Oe22E2 ~T s(e2)
 �x(A2)��O delays21



The network 
onsisting of the timed automata A1 and A2 from Figure 5.1,for example, is de�ned as a program over the set of variablesV = fat1; at2; a
t1; a
t2; at 01; at 02; x; y; x0; y0g;where �x(A1) = (at 01 = at1 ^x0 = x) and �x (A2) = (at 02 = at2 ^ y0 = y).Is := (at1 = 0^ at2 = 0^x = 0^ y = 0)T s := h[(at1 = 0^ at 01 = 1^x0 = 0^ a
t1 = a^ a
t2 = a)
(at1 = 0^ at 01 = 2^x = 1^x0 = x^ a
t1 = b^�x (A2))
 �x(A1)℄ ^[(at2 = 0^ at 02 = 1^ y = 2^ y0 = y ^ a
t2 = a^ a
t1 = a)
(at2 = 0^ at 02 = 2^ y0 = y^ a
t2 = 
^�x(A1))
 �x (A2)℄i
(at 01 = at1 ^ at 02 = at2 ^x0 � x � 0^ y0 � y = x0 � x)Theorem 4 (BMC for Networks of Timed Automata) Given two timedautomata with disjoint set of 
lo
ks Ai = hLi; l0i ;�i;Cl i; Ei; Inv ii, for i = 1; 2.LetMs = hIs; T si be the program 
orresponding to the network A1kA2 as givenin De�nition 8, and M = hI; T i be the program en
oding the produ
t automa-ton A1 � A2 a

ording to De�nition 2. Then for a k 2 IN , the kth unfoldingsof Ms and M are equisatis�able, that is [[Ms℄℄k � [[M ℄℄k.Proof. (() Assume [[M ℄℄k = I0(x[0℄)^ Vk�1j=0 Tj(x[j℄; x[j + 1℄) as given inDe�nition 4. Let us �rst 
onsider only state transition steps for M . We proveby indu
tion over k that if [[M ℄℄k is satis�able then so [[Ms℄℄k.Basis 
ase k=0. By De�nition 7 (produ
t 
onstru
tion)[[M ℄℄0 = I0(x[0℄) = (at [0℄ = (l01; l02) ^ ^xi2Cl1 xi[0℄ = 0 ^ ^yi2Cl2 yi[0℄ = 0)This formula 
an be transformed into an equisatis�able formula of the form(at1[0℄ = l01 ^ at2[0℄ = l02 ^ ^xi2Cl1 xi[0℄ = 0 ^ ^yi2Cl2 yi[0℄ = 0)whi
h by De�nition 8 equals Is. Thus, I0(x[0℄) and Is0 (x[0℄) are equisatis�able.Indu
tion hypothesis. For j < k, [[Ms℄℄j is satis�able if [[M ℄℄j is satis�able.Indu
tion step j=k. We show that Vkj=0 T sj is satis�able if Vki=0 Ti is sat-is�able. By indu
tion hypothesis it follows that Vk�1j=0 T sj and Vk�1i=0 Ti are eq-uisatis�able. To have a 
loser look at Tk, we 
onsider a state transition 
or-responding to an edge e = h(l1; l2); a; g; r; (l01; l02)i 2 E. We distinguish three22




ases: A1 and A2 syn
hronize on a, only A1 (A2) performs a, or the transi-tion from (l1; l2) to (l01; l02) is not allowed. In the �rst 
ase e is obtained frome1 = hl1; a; g1; r1; l01; i 2 E2 and e2 = hl2; a; g2; r2; l02; i 2 E2, and we have~Tk := (at [k℄ = (l1; l2) ^ a
t [k℄ = a ^ g ^ at [k + 1℄ = (l01; l02) ^^xi2Cl1 xi[k + 1℄ = zi ^ ^yi2Cl2 yi[k + 1℄ = zi)where g = g1 ^ g2, and zi = 0 if xi 2 r1 [ r2; otherwise zi = xi[k℄. Fromat [k℄ = (l1; l2) (at [k + 1℄ = (l01; l02); a
t [k℄ = a) satis�able it follows at1[k℄ =l1 ^ at2[k℄ = l2 (at1[k + 1℄ = l01 ^ at2[k + 1℄ = l02; a
t1[k℄ = a^ a
t2[k℄ = a)satis�able. Therefore, the formulas ~T s(e1) and ~T s(e2) are both satis�able instep k, and by De�nition 8 the formula T sk is satis�able. In the se
ond 
asea 2 �1 n�2, e1 = hl1; a; g1; r1; l01; i, and~Tk := (at [k℄ = (l1; l2) ^ a
t [k℄ = a ^ g ^ at [k + 1℄ = (l01; l2) ^^xi2Cl1 xi[k + 1℄ = zi ^ ^yi2Cl2 yi[k + 1℄ = zi)where g = g1, and zi = 0 if xi 2 r1; otherwise zi = xi[k℄. By an argumentsimilar to that of the �rst 
ase, ~T s(e1) is satis�able in step k. Sin
e A2 does notperform any transition, �x(A2) is satis�able, and therefore T sk are satis�able.In the third 
ase, if the transition e 
annot be taken, the formulas �x(A1) and�x(A2), and therefore T s, are satis�able.()) Follows by a similar argumentation.Now, let us 
onsider delay steps. A

ording to De�nition 2, the delay steps ofthe system A1 �A2 (after quanti�er elimination) are en
oded asdelay := ^l2Inv(A1�A2)(at = l) Inv(l)(Cl 01 [ Cl 02))^ at 0 = at ^ x01 � x1 � 0 ^ ^y2Cl1[Cl2nfx1g y0 � y = x01 � x1The above formula is equivalent todelay := ^l2Inv(A1)(at1 = l ) Inv(l)(Cl 01)) ^^l2Inv(A2)(at2 = l ) Inv(l)(Cl 02)) ^23



at 01 = at1 ^ at 02 = at2 ^x01 � x1 � 0 ^ x02 � x2 � 0 ^^y2Cl1nfx1g y0 � y = x01 � x1 ^^y2Cl2 y0 � y = x01 � x1whi
h is equal to delay1 ^ delay2 ^ (x01�x1 = x02�x2). Thus, by De�nition 8,delay = delays.2
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Chapter 6Dis
ussion and Con
lusionWe presented a bounded model 
he
king pro
edure (BMC) for timed automataand linear temporal logi
 with real-valued 
lo
k 
onstraints. The main 
ontribu-tion is a 
omplete BMC algorithm for timed automata, whi
h is 
ompositionalin that Boolean 
onstraint formulas en
oding 
omplex systems 
an be obtainedby Boolean 
ombinations of the en
oding of the 
omponents. A dire
t en
odingof the produ
t automaton would 
ause an exponential blow up in the lengthof the resulting Boolean 
onstraint formula. The 
ompleteness proof 
an beadapted to any systems with a �nite bisimulation. Further, we give lower andupper bounds for the length k of 
ounterexamples, that depend on the stru
-ture of the B�u
hi automaton of the given formula, and the region automaton
orresponding to the timed automaton.The main problem of the BMC approa
h is to 
ome up with eÆ
ient al-gorithms for solving the satis�ability problem for Boolean 
onstraint formulas.Spe
ialized data stru
tures for timed automata, su
h as di�eren
e bounded ma-tri
es (DBMs) [Dil89℄, 
lo
k di�eren
e diagrams (CDDs) [LPWY99℄, or di�er-en
e de
ision diagrams (DDDs) [MLAH99℄, 
annot be applied dire
tly for BMC,sin
e the generated formulas 
ontain 
lo
k 
onstraints of the form x0�x = y0�y,as needed for en
oding the delay steps. It is un
lear if even re
ently developed
onstraint solvers, su
h as the satis�ability 
he
ker for di�eren
e logi
, pre-sented in [MNAM02℄, 
an deal with this kind of 
onstraints. On the otherhand, general-purpose theorem proving, su
h as PVS [ORS92℄, whi
h uses a
ombination of BDDs [Bry86℄ and linear arithmeti
 reasoning based on loop25



residue [Sho81℄, is not very eÆ
ient. For example, �nding a 
ounterexample oflength k = 2 in the (modi�ed) train gate 
ontroller proto
ol requires around70 s, and for k = 3 around 8500 s. Re
ently, new te
hniques for 
he
kingsatis�ability of Boolean 
onstraint formulas have been developed, by 
ombin-ing SAT solvers with domain-spe
i�
 de
ision pro
edures based on lemmas ondemand [dMRS02, BDS02℄. We have implemented a prototypi
al satis�abilitysolver [dMRS02℄ that 
ombines the SAT solver Cha� [MMZ+01℄ with the de
i-sion pro
edures ICS [FORS01℄. The 
ore of the solver is a re�nement algorithmbased on lazy theorem proving. In ea
h re�nement step, the Boolean satis�a-bility 
he
ker Cha� is used to suggest 
andidate assignments. Then ICS 
he
kswhether su
h a Boolean assignment determines a 
onsistent assignment for the
orresponding set of 
onstraints. Whenever su
h a 
onsisten
y 
he
k fails, the
urrent Boolean formula is re�ned by adding a Boolean analogue of this in
on-sisten
y. The SAT solver is restarted, and a new 
andidate assignment for there�ned formula is suggested.We have performed some initial experiments, using Fis
her's mutual ex
lu-sion proto
ol [Lam87℄ with a slight modi�
ation of the timing 
onstraints asa ben
hmark. We en
oded systems of n = 2; : : : ; 10 pro
esses as a Boolean
onstraint formula in a 
ompositional way, as des
ribed in Chapter 5. On aPentium II, 450 MHz, for 2 pro
esses we found a 
ounterexample of length 3(shortest 
ounterexample) in 0.23 s, of length 5 in 0.85 s, and of length 10 in6.12 s. For 5 pro
esses we obtain, for k = 5, 1.34 s, and for k = 10, 16.11 s.For a system 
onsisting of 10 pro
esses, and a bound k = 10 a 
ounterexamplewas found in 210.8 s. Although in an initial phase, the performed experimentsshow that BMC is a promising te
hnique for verifying timed systems. Errorsin larger systems for whi
h 
onventional timed model 
he
king tools fail or areineÆ
ient 
an be found using BMC.Lazy theorem proving and lemmas on demands are relatively new 
on
epts,and the underlying implementations improve on a daily basis. Currently, weperform our experiments also with both a new implementation of lemmas ondemand and CVC [BDS00℄, and are in the pro
ess of evaluating and 
omparingboth approa
hes.
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