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Abstract. A group membership protocol is presented and proven cor-
rect for a synchronous time-triggered model of computation with pro-
cessors in a ring that broadcast in turn. The protocol, derived from one
used for critical control functions in automobiles, accepts a very restric-
tive fault model to achieve low overhead and requires only one bit of
membership information piggybacked on regular broadcasts. Given its
strong fault model, the protocol guarantees that a faulty processor will
be promptly diagnosed and removed from the agreed group of proces-
sors, and will also diagnose itself as faulty. The protocol is correct under
a fault-arrival assumption that new faults arrive at least n+ 1 time units
apart, when there are n processors. Exploiting this assumption leads to
unusual real-time reasoning in the correctness proof.

1 Introduction and Motivation

Group membership has become an important abstraction in providing fault-
tolerant services for distributed systems [2]. As in any protocol for group mem-
bership, the one presented here allows nonfaulty processors to agree on the mem-
bership, and to exclude apparently faulty ones. Because of the strong fault model
used, the protocol we consider has the additional desirable properties that the
nonfaulty processors agree on the membership at every synchronous step, only
faulty ones will be removed from the membership, and removal will be prompt.
Moreover, a processor with a fault will also diagnose itself promptly.

This protocol for group membership is appropriate for bandwidth-constrained
broadcast networks because it requires only one acknowledgment bit to be pig-
gybacked onto existing regularly scheduled broadcasts. The protocol is derived
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from one in a tightly integrated protocol architecture for automobile control [9].
Our contribution is to isolate this group membership protocol (which has not
been described explicitly in previous papers), to abstract it from other elements
of the integrated protocol, to give a precise formulation of its fault model, and
to provide a systematic proof of its correctness. The argument for correctness is
interesting and surprisingly intricate because the paucity of information carried
in each individual broadcast requires inferences to be made over sequences of
broadcasts; this, in turn, requires the statement of correctness to be strength-
ened significantly in order to obtain one that is inductive.

1.1 Background

Algorithms for industrial applications are optimized to deliver maximum util-
ity from minimum resources. These optimizations pose interesting problems in
protocol design and analysis that differ from those traditionally considered in
the algorithms literature. For example, industrial algorithms for distributed con-
sensus are less concerned with asymptotic reductions in the number of rounds
than in maximizing the number of faults that can be tolerated with a small
fixed number of rounds (generally two). This leads, for example, to “hybrid”
fault models and associated algorithms that permit finer distinctions among
faults than purely Byzantine fault models and provide strictly superior fault
tolerance [4,10,12,14,17].

The starting point for the algorithm considered here is the time-triggered
protocol (TTP) of Kopetz and Grunsteidl [9]. This protocol is intended for the
control of critical functions in automobiles, where communications bandwidth
is severely limited, some functions (e.g., ignition timing) require service at very
high rates and with great temporal precision, and many functions (e.g., brake-by-
wire, steer-by-wire) are safety critical [7]. For these reasons, TTP (and protocols
for similar applications, such as ARINC 659 which provides the safety-critical
backplane for the top-level avionics functions of the Boeing 777 [1]) are highly
integrated, and services such as clock-synchronization, reliable broadcast, group
membership, and primary-backup shadowing are combined with the basic data-
communication service rather than layered. This allows high-quality services to
be provided with very high performance at low overhead (for example, ARINC
659 achieves clock synchronization to within two bit-times at 30 MHz). These
protocols also separate fault-tolerance for common cases from those for more
severe ones. For example, the group membership protocol of TTP assumes only a
single transmit or receive fault (and those faults are themselves narrowly defined)
within any two rounds, with more severe fault modes and higher fault arrival
rates being handled by a “blackout” operating mode. Empirical data supports
these design decisions [9].

Bandwidth is a precious commodity in applications of the family of protocols
we study here. Practical considerations such as cost of copper wire, likelihood of
failures of interconnects, and lack of skilled maintenance drive designers to focus
on simple and cheap hardware interconnect technology such as twisted pair.
Extra runs of wire back and forth around a vehicle for redundancy and extra



bandwidth are perceived to be too costly. Wireless communication is viewed as
impractical due to the extreme interference expected in the environment. Thus
relatively low bandwidth is one of the critical concerns of the designers of these
protocols. Even an extra bit per message is considered significant in this domain.

The design constraints on a group membership protocol for an application
such as TTP are that it should provide timely and accurate identification and
exclusion of faulty processors with minimum overhead. The integrated nature
of the protocol means that rather than interpose special “group membership
packets” into the communications stream, it should piggyback what it needs
for group membership onto the regular data packets. One way to do this is
for each processor to append its assessment of the current membership to each
packet that 1t sends. Under suitable assumptions, a protocol can be based on this
approach [8], but it is clearly expensive—requiring n bits of membership data
appended to each broadcast, for an n processor system (n is 10-20 for these
applications). Later descriptions of TTP show only two bits being used for this
purpose (actually, they show four, but that appears to be due to the fact that
the buses are paired) [9], but the membership protocol is not described. In the
following sections, we present a protocol that satisfies these constraints, using
only one bit per broadcast, and analyze its properties.

In the following section the model, including its fault assumptions, is first de-
scribed independently of the group membership problem. Then the assumptions
that involve group membership are given, and the kind of reasoning needed for
proving correctness is described. The detailed protocol is seen in Section 3 while
the proof of correctness is given in Section 4. In the final sections we present
a justification for the n + 1 limit on fault arrivals, sketch extensions to allow
repaired processors to rejoin the group, and briefly describe our use of formal
analysis with the Mur¢ state exploration system.

The paper shows that a level of abstraction familiar to researchers in dis-
tributed programming can be used to isolate and reason about one of a suite of
protocols that are combined at the implementation level for efficiency reasons.
The separation leads to fault assumptions that seem strong, but are comple-
mented by other assumptions and interleaved protocols.

2 The Model

There are n processors (numbered 0,...,n — 1) arranged in a logical ring and
attached to a broadcast bus. Execution is synchronous, with a notional fime
variable increased by one at each step; this, in turn, defines a slof in the range
0,...,(n—1) as time mod n. Nonfaulty processors broadcast whenever it is their
slot.

The goal of group membership is to maintain a consistent record of those
processors that appear able to communicate reliably and to execute the protocol.
A group membership protocol need not tolerate all the types of faults that may
afflict the system of which 1t is a part: other protocols, logically both “above” and
“below” group membership, handle some types of faults. In TTP, for example,



replication of the broadcast buses, and strong CRCs (checksums), effectively
eliminate message corruption and reduce message loss to a very low level. Clock
synchronization ensures that all nonfaulty processors share a common notion of
time, and “bus guardians” with independent knowledge of the broadcast schedule
prevent faulty processors from speaking out of turn. State-machine replication
[16] or pairwise comparison is used to mask or to detect processor faults. These
considerations (and empirical measurements) justify considering only two types
of faults in the context assumed here.

Send fault: a processor fails to broadcast when 1its slot is reached.
Receive fault: a processor fails to receive a broadcast.

As noted above, other types of faults can be ignored because they are separately
detected by other elements of the total protocol suite and then manifest them-
selves as either send or receive faults. For example, a transient internal data fault
can lead to a processor shutting down and thus exhibiting a send fault when its
slot 1s next reached.

Observe that a send fault can only occur to a processor when it is in the
broadcast slot, and a receive fault can only occur to a processor different from
the broadcaster. Notice, too, that messages cannot be corrupted, and that a send
fault is consistent: no processor receives a message from a send-faulty broad-
caster. Faults are intermittent: a faulty processor may operate correctly in some
steps and manifest its fault in others. A processor is nonfaulty until it manifests
a fault, thereafter it 1s considered faulty; a processor is actively faulty at a step if
it manifests its fault at that step. That 1s, a processor 1s actively send-faulty at
a step if it 1s expected to broadcast but fails to do so; it is actively receive-faulty
at a step if it fails to receive the broadcast from a nonfaulty broadcaster.

Two additional assumptions are crucial to the correctness of our protocol,
and are justified by the division between a “blackout” operating mode (not
considered here) for coping with massive or clustered failures, and the “normal”
mode (implemented by the mechanisms described here) that is required to cope
only with relatively sparse fault arrivals.

Fault arrival rate: only one nonfaulty processor becomes faulty in any n + 1
consecutive slots.

Minimum nonfaulty processors: there are always at least two nonfaulty pro-
Cessors.

The fault model described so far is independent of the problem of group
membership. Now we turn to the aspects needed to specify and describe the
group membership protocol.

— Each processor has a local membership set, that initially contains all proces-
sors.

— Processor ¢ is expected (to broadcast) by processor p if the current slot is ¢,
and p’s local membership set contains g.



A processor will normally broadcast in its slot; it can never broadcast out-of-
turn, but it may fail to broadcast in its slot for two reasons:

— It suffers a send fault in that slot,
— Tt has diagnosed that it suffered an earlier (send or receive) fault and remains
silent to inform other processors of that fact.

Using the assumptions and definitions of this model, it is now possible to
summarize the requirements specification for the group membership protocol.
The required safety property is that the local membership sets of nonfaulty
processors are identical in every step, and contain all nonfaulty processors. Ad-
ditionally, a progress property is needed to exclude trivial solutions: a faulty
processor will be removed from the local membership sets of nonfaulty proces-
sors no later than the step following its next broadcast slot.> Our protocol also
ensures that a faulty processor will eventually remove itself from its own mem-
bership set (self-diagnosis).

When a processor does broadcast, it appends an “ack” bit to whatever data
constitutes the broadcast. This bit indicates whether or not that processor re-
tained the previous expected broadcaster in its membership set. By observing
the presence or absence of expected broadcasts, and by comparing the ack bits
of received broadcasts to their own observations, processors are able to diagnose
their own and other processors’ faults and to maintain consistent membership
sets.

Non-receipt of an expected broadcast can leave ambiguous the question of
whether the transmitter or receiver is faulty. The report (encoded in the ack bit)
from the next expected processor is needed to resolve this ambiguity; this report
must be reliable, so we will need to show that the next expected processor must
be nonfaulty in this case. This does not follow trivially from the fault arrival rate
assumption because, for example, the initial non-receipt of a broadcast could be
due to that broadcaster falling silent after self-diagnosing a much earlier receive
fault. We will need to establish that the diagnosis of faults is sufficiently prompt
that it combines with the fault arrival rate assumption to guarantee that the
next expected broadcaster cannot be faulty in these circumstances. Thus certain
progress properties cannot be separated from the basic agreement properties in
the correctness proof.

3 The Protocol

Processors follow a simple fixed procedure: if it is processor p’s slot, and p is in
its own local membership set, then p attempts to broadcast. (If p is nonfaulty or
receive-faulty, it succeeds; if send-faulty, it does not, but is unaware of the fault.)
The broadcast includes one bit of state information defined below: the ack bit

° Technically, the real-time requirement seen here is a safety property and not a
progress (or liveness) property in the sense of [11]. However, it does serve to guarantee
that needed steps occur and so we refer to it informally as a progress property.



of the broadcaster. Each other processor updates its own local membership set
by applying certain rules (described below) to the bit received (or not) from the
expected broadcaster. The rules allow each processor to retain or remove either
the expected broadcaster or itself from its local membership set, but it will not
change its record of membership for any other processor.

Each processor p uses the global variable time, a local constant slot, and
local variables membership and ack.

— The global variable time is an abstraction justified by clock synchronization
among local clocks. As noted in the introduction, clock synchronization is
assumed to be part of the complete protocol suite along with group mem-
bership, and guarantees that all processors agree on the (discrete) value of
time.

— slot is a natural number in the range 0...n — 1 that records the position
of p with respect to other processors in the order of broadcast. This value is
fixed and unique for each processor.

— membership is the set of processors in p’s current view of the group.

— ack is a boolean recording whether p received the previous expected broad-
cast and agreed with the ack bit carried in that broadcast. As will be seen
shortly, this means that the ack bit 1s true iff p has retained the previous
expected broadcaster in its membership, or p was that broadcaster.

We use ack(p) to indicate the ack bit of processor p, and slot(p) to indicate its
slot value. Initially, each processor’s membership contains all other processors,
its ack is true, the global time is some initial value (perhaps 0), and each
processor is nonfaulty.

The protocol proceeds by discrete time steps; at each step, one processor may
broadcast. That broadcaster is the processor b for which slot(b) = time mod n.
The broadcast contains the broadcaster’s ack bit, plus any data that may be
needed for other purposes. The broadcast will be attempted only if b is in 1ts
own membership set, and will succeed only if b 1s not actively send-faulty in that
step.

The protocol is described by specifying how each processor p updates its local
variables membership and ack in terms of their previous values, the receipt
or non-receipt of an expected broadcast, and the value of the ack bit carried in
that broadcast.

We first define the auxiliary predicate arrived(b,p) as true in a step if and
only if processor p receives a broadcast from b, and b is the expected broadcaster
in that step. This predicate can be considered local to p because that processor
can sense the non-receipt of a broadcast.

— For each processor p, if the current broadcaster b is not an element of p’s
membership, none of the local variables are changed.

— If p is the broadcaster b and is in its own membership set, it broadcasts
ack(b) and then updates ack(b) to true.



— Otherwise, when p i1s not the broadcaster b, each field of p is updated as
follows (notice that ack(p) is a local variable of p, and that ack(b) is provided
in the broadcast received from b).

e Updated membership: same as previous membership except possibly
for p and b.

* p 1s excluded in two cases:
(a) (NOT arrived(b,p)) AND NOT ack(p), or
(b) arrived(b, p) AND ack(b) AND NOT ack(p).
* b 1s excluded in the two cases:
(¢) NoT arrived(b,p), or
(d) ack(p) AND NOT ack(b).*

e Updated ack: set to arrived(b,p) AND (ack(b) orR NOT ack(p) ).
Observe that the updated value of ack(p) is true iff p retains b in its
local membership (i.e., it is the negation of the disjunction of (¢) and
(d)). We say that the broadcast by b is acceptable to p if the updated
value of ack(p) is true.

Thus, p removes itself if (a) two consecutive expected broadcasts are unac-
ceptable, or (b) it considers the previous broadcast unacceptable, but b considers
it acceptable. Moreover, p removes b if (c) no broadcast is received or (d) p con-
siders the previous expected broadcast acceptable, while b does not.

The broadcaster always assumes that its broadcast was correctly received
even when that was not the case, and thus it sets its ack bit to true. For other
processors, the ack bit will be ¢rue in the following step exactly when the broad-
cast arrives and either the broadcaster views the previous expected broadcast as
acceptable, or the receiver does not.

4 Proof of Correctness

The key safety property of a group membership protocol is agreement: all the
membership sets of nonfaulty processors should be identical. Furthermore, all
nonfaulty processors should be included in that common membership set. These
properties are proved in Theorem 1. The progress property that all faulty pro-
cessors are promptly diagnosed and removed from the common membership set
is proved in Theorem 2, but much of the justification is already present in the
invariant required to establish Theorem 1. A corollary is that the common mem-
bership set contains at most one faulty processor. In addition, faulty processors
are able to diagnose themselves, and do so promptly; this is proved in Theorem
3. These three theorems correspond to the requirements stated in Section 2.

* There is a bug in the algorithm as just described: p should exclude itself (not b)
when ack(p) AND NOT ack(b) and p was the previous broadcaster and sent a false
ack in that broadcast. The bug manifests itself only when where there are exactly
three processors in the membership, and its correction affects the proof of Theorem
3. The bug and its correction were pointed out by N. Shankar in an email message on
31 January 1998, and was independently discovered by Sadie Creese and Bill Roscoe
of Oxford University using the FDR model checker.



Theorem 1 (Agreement). The local membership sets of all nonfaulty processors
are always identical (and are called the agreed set) and contain all nonfaulty
processors.

This theorem is proved by induction on time, but its statement must first
be strengthened to yield an assertion that is inductive. In addition to claiming
agreement among all nonfaulty processors, and that all nonfaulty processors are
included in the agreed membership set, we must claim that all nonfaulty proces-
sors have the same values for the ack bits at each step, that these bits indeed
reflect the intended meaning, and some additional facts about the diagnosis of
earlier errors. These are needed to guarantee that in steps in which a fault has
been detected, but not yet accurately ascribed, the next expected broadcaster
will be nonfaulty and will resolve the uncertainty.

The invariant has the following conjuncts.

(1) All nonfaulty processors have the same local membership sets.

(2) All nonfaulty processors are in their own local membership sets.

(3) All nonfaulty processors have the same value for ack.

(4) For each processor p, ack(p) is true iff in the most recent previous step

in which p expected a broadcast from a processor b, either p was b, or

arrived(b, p) A (ack(b) V mack(p)) in that step.

(5) If a processor p became faulty less than n steps ago and ¢ is a nonfaulty
processor, either p is the present broadcaster or the present broadcaster is
in p’s local membership set iff 1t 1s in ¢’s.

(6) TIf a receive fault occurred to processor p less than n steps ago, then either p
is not the broadcaster or ack(p) is false while all nonfaulty ¢ have ack(q) =
true, or p is not in its local membership set.

(7) Tf in the previous step b is in the broadcaster slot, p is a nonfaulty processor,
and arrived(b, p) does not hold, then b is faulty in the current step.

(8) TIf the broadcaster b is expected by a nonfaulty processor, then b is either

nonfaulty, or became faulty less than n steps ago.

Note that since all nonfaulty processors have identical membership sets and
agree on which slot has been reached, they also agree on which processor is the
next expected broadcaster. Moreover, by (5), processors that became faulty less
than n slots ago agree with the nonfaulty ones on whether the present slot is
expected to broadcast. The conjunct (5) is needed to show that newly faulty
processors still agree with nonfaulty ones on the next expected broadcaster until
they are diagnosed both by others and by themselves.

Conjuncts (7) and (8) are needed to guarantee that no fault has occurred to
the processor in an expected slot following one that is newly silent. As mentioned
earlier, the prompt diagnosis of receive faults seen in (6) is needed to prove (8).
The fault arrival rate assumption thus links the seemingly independent questions
of how soon a fault is followed by a (possibly ambiguous) indication that some
fault has occurred, and how soon after that another fault can occur.

An important feature of the protocol is used in the proof and will be called
the restricted-change lemma: if a change is made in the local membership set



of p relative to the previous step, it 1s either in the membership of p itself, or
in the membership of the broadcaster in the previous step. This can be seen
easily in the description of the protocol. Another useful property that can be
seen directly in the description of the protocol is that arrived(b, p) will be true
precisely when b = p or (b is not actively send-faulty, b is in its own membership,
p is not actively receive-faulty, and both & and p are in p’s membership).

The conjuncts (4) and (7) simply record the intended meanings of ack bits
and the non-receipt of a broadcast, and follow directly from the assignments to
ack and the definition of arrived, respectively. We show the inductive argument

for (5), (6), and (8) separately, and then return to (1), (2), and (3).

Lemma [for conjunct (5)]: If the invariant has been true so far, conjunct (5) will
be true of the next step. That is, if in the next step p became faulty less than
n steps ago, and ¢ is nonfaulty, then either p is the broadcaster in that step, or
the broadcaster 1s in p’s local membership set iff it is in ¢’s.

Proof: Let r denote the broadcaster in the next step. If p = r, the lemma holds.
Otherwise, n — 1 steps ago r was in p’s membership iff it was in ¢’s, because
both p and ¢ were then nonfaulty and agreed on their membership sets. In all
steps since then and up until the next step, r is not the broadcaster and is not
p, and thus its membership in p’s local membership set i1s not changed, by the
restricted-change lemma. If ¢ # 7, the same reasoning holds for ¢ and r, and we
are done. If ¢ = r, by the inductive hypothesis, n steps ago the local membership
sets of ¢ and p both contained ¢ (when both were nonfaulty), and ¢ still contains
itself, since it is nonfaulty in all steps up to the next step, while ¢ is in the
membership set of p by reasoning as before. a

Lemma [for conjunct (6)]: If the invariant has been true so far, conjunct (6) will
be true of the next step. That is, in the next step, if a receive fault occurred to
processor p less than n time ago, then either p is not the broadcaster or ack(p) is
false while all nonfaulty ¢ have ack(g) = true, or p is not in its local membership
set.

Proof: If in the next step p did not become faulty less than n steps earlier, or
p 1s not the broadcaster, the assertion is true. Otherwise, since p became faulty
less than n steps earlier, and is now the broadcaster, 1t was not the broadcaster
since it became faulty. Thus until the next step (inclusive) the broadcaster in
each step was in p’s local membership set if and only if it was in ¢’s, for any
nonfaulty ¢, by (5). If in all previous steps after p became receive-faulty, p and
any nonfaulty ¢ did not have the broadcaster at each step in their membership
sets, then the ack bit of p is false. This is true because it was set to false in
the step it became receive-faulty (by definition of ack and a receive fault) and
has not been changed since (again, using the definition of ack for nonexpected
slots). Similarly, for all nonfaulty ¢ in this case, their ack bit is true: it was set
to true when p became receive-faulty (since they all did receive a broadcast from



a nonfaulty processor with which they had the same ack bit) and has not been
changed since. Thus the assertion holds in this case.

If there was a step since p became receive-faulty, but earlier than the next step
in which p and any nonfaulty ¢ had the broadcaster r in their local membership
sets, then that r must be nonfaulty: by the fault arrival assumption it is not a
previously nonfaulty one that is newly send-faulty or receive-faulty within the
last n time units (because p has become faulty within the last n), and by the
inductive hypothesis, if it had become receive or send-faulty more than n units
ago, 1t would already have been diagnosed in its previous broadcast slot or earlier
and thus would not be expected. (Actually, by (6) in the step after its broadcast
following its becoming faulty, it would not be in the local membership set of any
nonfaulty process.)

So r is nonfaulty and thus will have ack(r) {rue in its broadcast. If p did
not receive that broadcast, then it did not receive two consecutive expected
broadcasts and thus removed itself by rule (a). If p did receive the broadcast, it
removed itself by rule (b) because it received ack(r) as true while ack(p) was
false. Thus in the present step, p is not in 1ts own local membership, as required
by the assertion. a

Lemma [for conjunct (8)]: If the invariant has been true so far, conjunct (8) is
true in the next step. That is, if the broadcaster in that step p i1s expected by
a nonfaulty processor ¢, then p is either nonfaulty or became faulty less than n
steps ago.

Proof: By contradiction. Consider a situation where broadcaster p 1s expected
by nonfaulty processors ¢, but p became faulty at least n steps earlier. Then
there is an earlier step in which p 1s the broadcaster, and it became faulty less
than n steps earlier. By conjunct (6), if it became receive-faulty, then it will
not be in the membership set of any nonfaulty processor in the step following
its broadcast (using the conditions for removing a broadcaster), contradicting
the fact that it is expected now. If it became send-faulty, it also is not in the
membership of any nonfaulty processor in the following step, by rule (c), again
contradicting the hypothesis. a

Theorem 1 follows easily from the following claim.
Claim. The conjuncts (1)—(8) are an invariant.

The Proof is by induction.

Basis: All processors are nonfaulty initially and are in all local membership sets,
the ack bits agree, and there have been no faults.

Inductive step: Conjuncts (5), (6), and (8) have already been proved, while (4)
and (7) are simple inductions using the definitions of the terms. Here we show
the remaining conjuncts (1)—(3): membership sets of nonfaulty processors agree,
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they contain the nonfaulty processors, and the ack bits of nonfaulty processors
agree.

Assume the invariant is satisfied in all steps up to and including the m’th
step (that can be identified with the value of time in the state). Consider the
m + 1’st. If the processor at slot (;m mod n) is not a member of the agreed set,
nothing changes in step m+1 except the update of time, and the result follows.

Otherwise, the processor at slot (m mod n) is in the agreed set and is ex-
pected by nonfaulty processors. If it is nonfaulty, it will broadcast, be received
by all nonfaulty processors, and be maintained in their local membership set (the
broadcast and local ack bits agree by the inductive hypothesis). Tt also retains
itgelf in its local membership set. All nonfaulty processors will set ack to true
in the next step. No nonfaulty processor will remove itself. This is true because:
condition (a) does not hold, since a nonfaulty processor will broadcast and the
message is expected and thus is received; condition (b) does not hold because
the agreed sets were the same in all previous stages, as were the ack bits. Thus
all nonfaulty processors still have the same local membership sets and ack bits,
and include themselves in their local membership sets.

If the processor b at slot (m mod n) is in the agreed set but has a send fault or
has detected its own receive fault and removed itself from its local membership
set, no nonfaulty processor p will receive b even though it was expected (i.e.,
arrived(b,p) is false), and all will mark it as absent in step m + 1 by rule
(c) and will set ack to false in that step. No nonfaulty processors will remove
themselves in this case: since arrived(b,p) is false, condition (b) is irrelevant,
and (a) also does not hold, because the neighbors in expected slots around the
silent processor must be nonfaulty, by the fault model and the conjuncts (7) and
(8). In particular, the broadcast in the most recent expected slot before b was
from a nonfaulty processor and thus must have arrived at p and had an ack bit
that agreed with that of all nonfaulty recipients (by the inductive hypothesis).
Therefore the ack(p) bit in step m is true by conjunct (4). Thus in step m + 1
the local membership sets and the ack bits of those nonfaulty processors remain
identical, and no nonfaulty processor removes itself.

If the processor b in the broadcast slot is in the agreed set and in its local
membership set (and thus is expected by nonfaulty processors) but is receive-
faulty, then by conjunct (8) the receive fault occurred within the last n steps,
and by conjunct (6), b will broadcast ack(b) as false, while nonfaulty proces-
sors p have ack(p) = true. Thus when the new broadcast occurs, all nonfaulty
processors will remove the receive-faulty broadcaster by rule (d), and also set
ack to false. In this case too, no nonfaulty processor will remove itself from its
local membership set: since arrived(b, p) is true, condition (a) is irrelevant, and
condition (b) does not hold since the broadcaster had a false ack bit when it
broadcast. a

Most of the justification for prompt diagnosis and removal of faulty processors
was provided in the proof of the invariant above. We have:
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Theorem 2 (Prompt Removal). A faulty processor is removed from the mem-
bership sets of nonfaulty processors in the step following its first broadcast slot
while faulty.

Proof: As proved in conjunct (6) of the invariant, if a processor p becomes
receive-faulty, then in its next broadcast either ack(p) is false, while ack(q)
1s true for nonfaulty processors ¢, or p is not in its local membership set. In the
former case, p will be removed from the local membership set of ¢ by rule (d)
and in the latter case arrived(p, ¢) is false so that p is removed by rule (c). If p
becomes send-faulty, again arrived(p, q) is false, so p is removed by rule (c). O

Corollary (One Faulty Member). In any step the agreed group contains at most
one faulty processor.

Proof: Immediate from Theorem 2 and the fault arrival rate assumption. a

As part of the proof of the invariant needed for Theorem 1, in conjunct(6), we
showed that a processor that is not the next expected broadcaster after becoming
receive-faulty will remove itself from its local membership set. Here we show
that any faulty processor, including send-faulty ones and those that became
receive-faulty just before broadcasting, will remove themselves from their local
membership sets.

Theorem 3 (Rapid Self-Diagnosis). A newly faulty processor will remove itself
from its local membership set (and thereby diagnose itself) when the slots of at
most two nonfaulty processors have been passed.

Proof: If a processor p becomes send-faulty, all nonfaulty processors will set their
ack bits to false in the step following that processor’s slot, since the slot is
expected and no message is received. Similarly, if p just became receive-faulty in
the expected broadcast before its slot, it will broadcast ack as false, while the
nonfaulty processors have ack = frue, and thus will set their ack bits to false. In
either case, p will set its ack bit to true in the step after it broadcasts. Until its
own or the previous broadcast, p was nonfaulty, and thus its local membership
set agreed with all other nonfaulty processors. By the invariant of Theorem 1,
no nonfaulty processor will remove itself due to the new fault, thus the next
expected slot of the nonfaulty processors is the same as the next expected slot of
the faulty one. By the fault arrival assumption, the next expected slot must be
nonfaulty, since it cannot be newly faulty, and by the invariant it cannot be an
undiagnosed old fault. Thus the newly faulty processor p will receive ack = false
in the message from the next expected slot, disagree with the broadcaster, and
set its own ack bit to false. Since all nonfaulty processors receive that broadcast
and agree with i1ts ack bit, p will receive ack as {rue in the expected slot after
that (using the fact that there are at least two nonfaulty processors within the
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group). At that point, the faulty processor p will remove itself from its local
membership set, using (b).?

If a processor p becomes receive-faulty in its transition to the next step,
but p is not the next expected broadcaster, it will remove the broadcaster from
its local membership set, but otherwise has the same local membership sets and
next expected slot as the nonfaulty ones. It will also set ack(p) to false. Again by
the fault model, the next expected broadcaster must be nonfaulty, will broadcast
ack as true, and the receive-faulty processor p will remove itself using (b). O

5 Discussion and Conclusions

The fault arrival rate we assume in our fault model is at most one new faulty
processor in any consecutive n+ 1 slots. This 1s clearly tight, since if n were used
in place of n + 1, the algorithm fails. Consider a scenario with a receive fault of
the processor just before the broadcaster, followed n steps later by a send fault
of that same broadcaster. Since the receive-faulty processor will self-diagnose
and fall silent in its slot just before the subsequent send fault, all nonfaulty
processors will not receive two consecutive expected broadcasts. They will all
then incorrectly remove themselves from their local membership sets.

As this analysis shows, clustered faults can cause our algorithm to fail, though
it is generally more robust than this worst case analysis suggests: the precise re-
quirements are that the expected broadcaster must be nonfaulty when it follows
a receive fault (unless it was that broadcaster that suffered the receive fault in
the previous step) or the silence perpetrated by a successfully self-diagnosed re-
ceive fault, and the next {wo expected broadcasters must be nonfaulty following
a send fault or the broadcast of a processor that suffered a receive fault in the
previous step. Stochastic measurements are needed to determine more represen-
tative measures of the fault arrival rates and patterns that can be tolerated.

The requirement of two nonfaulty processors is also tight: if there are two
processors remaining in the group and one of them becomes faulty, then there
is no longer any possibility of distinguishing between a send and a receive fault.
In either case, a broadcast is not received by the other processor, each will
ultimately remove the other from its local membership set, and neither will ever
self-diagnose.

5.1 Robustness of Assumptions

Self-diagnosis requires a very strong assumption on the behavior of faulty pro-
cessors: namely, that they continue to execute the algorithm correctly for upto
n steps after becoming faulty. This is plausible when a send or receive fault is
truly due to a communications problem, but is less so when 1t is the manifes-
tation of a more serious failure. As noted previously, we assume that our group

® As noted in footnote 4, this argument is incorrect when there are only three pro-
cessors. In the corrected algorithm, p excludes itself on the previous round, when it
receives ack = false.
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membership protocol is part of a larger suite of protocols that can mask other
types of faults, or transform their manifestations into those that can be tolerated
by our algorithm. For example, checksums transform corrupted communications
into the send and receive faults that our algorithm can tolerate.

Loss of clock synchronization or a “babbling idiot” failure could cause a pro-
cessor to transmit outside its own slot, thereby possibly preventing nonfaulty
processors from communicating on the bus and leading to complete failure of
the system. These failure modes are handled using “Bus Guardians” in TTP
and self-checking pairs in ARINC 659: in both cases, each processor’s access to
the bus is mediated by a second component with an independent clock, so that
coincident double faults are required to create a catastrophic failure. Computa-
tion faults are likewise detected by pairwise comparison, or masked by voting,
and higher-level diagnosis and recovery algorithms then isolate or reboot the
afflicted processor [15,18-20]. In these cases, the failure mode is reduced to fail-
silence, which manifests itself to our group membership protocol as a combina-
tion of long-duration send and receive faults for the processor concerned. Since all
nonfaulty processors promptly detect and exclude send-faulty processors with-
out requiring the processor concerned to diagnose itself, the safety properties of
group membership are preserved even if the faulty processor is unable to execute
the protocol correctly. Self-diagnosis of send and receive faults, which is assured
for processors that do correctly execute our protocol, is moot for processors that
are in the grip of some larger crisis.

Processor faults that are not masked or detected and reduced to fail-silence by
other components of the protocol suite can be catastrophic for group membership
if they cause a processor to violate the protocol. For example, if the next expected
processor following a send fault incorrectly sends ack = true, then all other
processors will diagnose themselves as receive-faulty and exclude themselves from
the group. In TTP, such a collapse causes reversion to the blackout operating
mode. More insidious execution faults could allow a processor that suffers a
receive fault not to diagnose its failure. Since receive faults (other than of the
next expected broadcaster) require the afflicted processor to signal its failure
(by remaining silent), such an execution fault would allow the faulty processor
to remain a member of the group.

The possibility of such catastrophic or insidious faults is the price paid for
the low overhead of our group membership protocol. Experiments with an archi-
tecture similar to TTP [6] show that the incidence of such fail-silence violations
is sufficiently rare that they present an acceptably low risk to the system (given
the other mechanisms present in the total suite of protocols).

5.2 Formal Analysis, and Future Work

We have described and proved correct a protocol for synchronous group mem-
bership that, driven by practical considerations, trades a very restrictive fault
model in return for very low communications overhead—just one bit per mes-
sage. Despite the paucity of information carried by each message, the protocol
allows rapid and accurate identification and elimination of faulty processors.
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The reasoning that supports this claim, however, requires inferences to be made
over sequences of messages; this, in turn, requires the statement of correctness
to be strengthened significantly in order to obtain one that is inductive and
requires a surprisingly intricate proof with extensive case-analysis. We found
determination of an adequately strong (and true!) invariant, and development
of the corresponding proof, to be quite challenging, and turned to formal tech-
niques for assistance. We used the Mur¢ state-exploration system [3] to examine
instances of the protocol for the purposes of debugging the protocol, its fault
model and its assumptions, and also to check candidate invariants. Using Murg,
we were able to exhaustively check the behaviors of a ring of six processors with
up to three faults. This required some tens of minutes (on a Sparc 20) and 100
MB of memory and entailed exploration of almost two million states. We are
currently formalizing the general case and subjecting our proof of correctness to
mechanical checking using the PVS verification system [13].

For the future, we are interested in systematic techniques for deriving strength-
ened invariants of the kind needed here, and for generating the proof of correct-
ness. Some of the reasoning resembles that seen in the backward reasoning of
precedence properties in temporal logic [11].

The group membership protocol presented here has no provision for read-
mitting previously-faulty processors that now appear to be working correctly
again. Simple extensions, such as allowing a repaired processor to just “speak
up” when its slot comes by, are inadequate. (A processor that has a receive fault
just as the new member speaks up will not be aware of the fact and its local
membership set will diverge from that of the other processors; a second fault
can then provoke catastrophic failure of the entire system.) We are aware of
solutions that do work, at the cost of strong assumptions on the fault-detection
capability of the CRCs appended to each message, and plan to subject these
to formal examination. TTP encodes its “critical state” in its CRC calculation,
and the ack bit of our abstract protocol 1s in fact encoded implicitly in the CRC
and recovered by recalculation of the CRC for each of the two possible values
represented by that bit.

We are also eager to explore more of the highly optimized and integrated
algorithms seen in industrial protocols for safety-critical distributed systems,
such as TTP and ARINC 659. For example, the restrictive fault model used for
our group membership protocol is partly justified by the existence of a blackout
operating mode to deal with more severe, or clustered, faults. An interesting
challenge for the future is to establish the fault coverage of this combination,
and the correctness of the transitions between different operating modes in the
presence of faults.
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