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from one in a tightly integrated protocol architecture for automobile control [9].Our contribution is to isolate this group membership protocol (which has notbeen described explicitly in previous papers), to abstract it from other elementsof the integrated protocol, to give a precise formulation of its fault model, andto provide a systematic proof of its correctness. The argument for correctness isinteresting and surprisingly intricate because the paucity of information carriedin each individual broadcast requires inferences to be made over sequences ofbroadcasts; this, in turn, requires the statement of correctness to be strength-ened signi�cantly in order to obtain one that is inductive.1.1 BackgroundAlgorithms for industrial applications are optimized to deliver maximum util-ity from minimum resources. These optimizations pose interesting problems inprotocol design and analysis that di�er from those traditionally considered inthe algorithms literature. For example, industrial algorithms for distributed con-sensus are less concerned with asymptotic reductions in the number of roundsthan in maximizing the number of faults that can be tolerated with a small�xed number of rounds (generally two). This leads, for example, to \hybrid"fault models and associated algorithms that permit �ner distinctions amongfaults than purely Byzantine fault models and provide strictly superior faulttolerance [4,10,12,14,17].The starting point for the algorithm considered here is the time-triggeredprotocol (TTP) of Kopetz and Grunsteidl [9]. This protocol is intended for thecontrol of critical functions in automobiles, where communications bandwidthis severely limited, some functions (e.g., ignition timing) require service at veryhigh rates and with great temporal precision, and many functions (e.g., brake-by-wire, steer-by-wire) are safety critical [7]. For these reasons, TTP (and protocolsfor similar applications, such as ARINC 659 which provides the safety-criticalbackplane for the top-level avionics functions of the Boeing 777 [1]) are highlyintegrated, and services such as clock-synchronization, reliable broadcast, groupmembership, and primary-backup shadowing are combined with the basic data-communication service rather than layered. This allows high-quality services tobe provided with very high performance at low overhead (for example, ARINC659 achieves clock synchronization to within two bit-times at 30 MHz). Theseprotocols also separate fault-tolerance for common cases from those for moresevere ones. For example, the group membership protocol of TTP assumes only asingle transmit or receive fault (and those faults are themselves narrowly de�ned)within any two rounds, with more severe fault modes and higher fault arrivalrates being handled by a \blackout" operating mode. Empirical data supportsthese design decisions [9].Bandwidth is a precious commodity in applications of the family of protocolswe study here. Practical considerations such as cost of copper wire, likelihood offailures of interconnects, and lack of skilled maintenance drive designers to focuson simple and cheap hardware interconnect technology such as twisted pair.Extra runs of wire back and forth around a vehicle for redundancy and extra2



bandwidth are perceived to be too costly. Wireless communication is viewed asimpractical due to the extreme interference expected in the environment. Thusrelatively low bandwidth is one of the critical concerns of the designers of theseprotocols. Even an extra bit per message is considered signi�cant in this domain.The design constraints on a group membership protocol for an applicationsuch as TTP are that it should provide timely and accurate identi�cation andexclusion of faulty processors with minimum overhead. The integrated natureof the protocol means that rather than interpose special \group membershippackets" into the communications stream, it should piggyback what it needsfor group membership onto the regular data packets. One way to do this isfor each processor to append its assessment of the current membership to eachpacket that it sends. Under suitable assumptions, a protocol can be based on thisapproach [8], but it is clearly expensive|requiring n bits of membership dataappended to each broadcast, for an n processor system (n is 10{20 for theseapplications). Later descriptions of TTP show only two bits being used for thispurpose (actually, they show four, but that appears to be due to the fact thatthe buses are paired) [9], but the membership protocol is not described. In thefollowing sections, we present a protocol that satis�es these constraints, usingonly one bit per broadcast, and analyze its properties.In the following section the model, including its fault assumptions, is �rst de-scribed independently of the group membership problem. Then the assumptionsthat involve group membership are given, and the kind of reasoning needed forproving correctness is described. The detailed protocol is seen in Section 3 whilethe proof of correctness is given in Section 4. In the �nal sections we presenta justi�cation for the n + 1 limit on fault arrivals, sketch extensions to allowrepaired processors to rejoin the group, and brie
y describe our use of formalanalysis with the Mur� state exploration system.The paper shows that a level of abstraction familiar to researchers in dis-tributed programming can be used to isolate and reason about one of a suite ofprotocols that are combined at the implementation level for e�ciency reasons.The separation leads to fault assumptions that seem strong, but are comple-mented by other assumptions and interleaved protocols.2 The ModelThere are n processors (numbered 0; : : : ; n � 1) arranged in a logical ring andattached to a broadcast bus. Execution is synchronous, with a notional timevariable increased by one at each step; this, in turn, de�nes a slot in the range0; : : : ; (n�1) as time mod n. Nonfaulty processors broadcast whenever it is theirslot.The goal of group membership is to maintain a consistent record of thoseprocessors that appear able to communicate reliably and to execute the protocol.A group membership protocol need not tolerate all the types of faults that maya�ict the system of which it is a part: other protocols, logically both \above" and\below" group membership, handle some types of faults. In TTP, for example,3



replication of the broadcast buses, and strong CRCs (checksums), e�ectivelyeliminate message corruption and reduce message loss to a very low level. Clocksynchronization ensures that all nonfaulty processors share a common notion oftime, and \bus guardians" with independent knowledge of the broadcast scheduleprevent faulty processors from speaking out of turn. State-machine replication[16] or pairwise comparison is used to mask or to detect processor faults. Theseconsiderations (and empirical measurements) justify considering only two typesof faults in the context assumed here.Send fault: a processor fails to broadcast when its slot is reached.Receive fault: a processor fails to receive a broadcast.As noted above, other types of faults can be ignored because they are separatelydetected by other elements of the total protocol suite and then manifest them-selves as either send or receive faults. For example, a transient internal data faultcan lead to a processor shutting down and thus exhibiting a send fault when itsslot is next reached.Observe that a send fault can only occur to a processor when it is in thebroadcast slot, and a receive fault can only occur to a processor di�erent fromthe broadcaster. Notice, too, that messages cannot be corrupted, and that a sendfault is consistent: no processor receives a message from a send-faulty broad-caster. Faults are intermittent: a faulty processor may operate correctly in somesteps and manifest its fault in others. A processor is nonfaulty until it manifestsa fault, thereafter it is considered faulty; a processor is actively faulty at a step ifit manifests its fault at that step. That is, a processor is actively send-faulty ata step if it is expected to broadcast but fails to do so; it is actively receive-faultyat a step if it fails to receive the broadcast from a nonfaulty broadcaster.Two additional assumptions are crucial to the correctness of our protocol,and are justi�ed by the division between a \blackout" operating mode (notconsidered here) for coping with massive or clustered failures, and the \normal"mode (implemented by the mechanisms described here) that is required to copeonly with relatively sparse fault arrivals.Fault arrival rate: only one nonfaulty processor becomes faulty in any n + 1consecutive slots.Minimum nonfaulty processors: there are always at least two nonfaulty pro-cessors.The fault model described so far is independent of the problem of groupmembership. Now we turn to the aspects needed to specify and describe thegroup membership protocol.{ Each processor has a local membership set, that initially contains all proces-sors.{ Processor q is expected (to broadcast) by processor p if the current slot is q,and p's local membership set contains q.4



A processor will normally broadcast in its slot; it can never broadcast out-of-turn, but it may fail to broadcast in its slot for two reasons:{ It su�ers a send fault in that slot,{ It has diagnosed that it su�ered an earlier (send or receive) fault and remainssilent to inform other processors of that fact.Using the assumptions and de�nitions of this model, it is now possible tosummarize the requirements speci�cation for the group membership protocol.The required safety property is that the local membership sets of nonfaultyprocessors are identical in every step, and contain all nonfaulty processors. Ad-ditionally, a progress property is needed to exclude trivial solutions: a faultyprocessor will be removed from the local membership sets of nonfaulty proces-sors no later than the step following its next broadcast slot.3 Our protocol alsoensures that a faulty processor will eventually remove itself from its own mem-bership set (self-diagnosis).When a processor does broadcast, it appends an \ack" bit to whatever dataconstitutes the broadcast. This bit indicates whether or not that processor re-tained the previous expected broadcaster in its membership set. By observingthe presence or absence of expected broadcasts, and by comparing the ack bitsof received broadcasts to their own observations, processors are able to diagnosetheir own and other processors' faults and to maintain consistent membershipsets.Non-receipt of an expected broadcast can leave ambiguous the question ofwhether the transmitter or receiver is faulty. The report (encoded in the ack bit)from the next expected processor is needed to resolve this ambiguity; this reportmust be reliable, so we will need to show that the next expected processor mustbe nonfaulty in this case. This does not follow trivially from the fault arrival rateassumption because, for example, the initial non-receipt of a broadcast could bedue to that broadcaster falling silent after self-diagnosing a much earlier receivefault. We will need to establish that the diagnosis of faults is su�ciently promptthat it combines with the fault arrival rate assumption to guarantee that thenext expected broadcaster cannot be faulty in these circumstances. Thus certainprogress properties cannot be separated from the basic agreement properties inthe correctness proof.3 The ProtocolProcessors follow a simple �xed procedure: if it is processor p's slot, and p is inits own local membership set, then p attempts to broadcast. (If p is nonfaulty orreceive-faulty, it succeeds; if send-faulty, it does not, but is unaware of the fault.)The broadcast includes one bit of state information de�ned below: the ack bit3 Technically, the real-time requirement seen here is a safety property and not aprogress (or liveness) property in the sense of [11]. However, it does serve to guaranteethat needed steps occur and so we refer to it informally as a progress property.5



of the broadcaster. Each other processor updates its own local membership setby applying certain rules (described below) to the bit received (or not) from theexpected broadcaster. The rules allow each processor to retain or remove eitherthe expected broadcaster or itself from its local membership set, but it will notchange its record of membership for any other processor.Each processor p uses the global variable time, a local constant slot, andlocal variables membership and ack.{ The global variable time is an abstraction justi�ed by clock synchronizationamong local clocks. As noted in the introduction, clock synchronization isassumed to be part of the complete protocol suite along with group mem-bership, and guarantees that all processors agree on the (discrete) value oftime.{ slot is a natural number in the range 0 : : :n � 1 that records the positionof p with respect to other processors in the order of broadcast. This value is�xed and unique for each processor.{ membership is the set of processors in p's current view of the group.{ ack is a boolean recording whether p received the previous expected broad-cast and agreed with the ack bit carried in that broadcast. As will be seenshortly, this means that the ack bit is true i� p has retained the previousexpected broadcaster in its membership, or p was that broadcaster.We use ack(p) to indicate the ack bit of processor p, and slot(p) to indicate itsslot value. Initially, each processor's membership contains all other processors,its ack is true, the global time is some initial value (perhaps 0), and eachprocessor is nonfaulty.The protocol proceeds by discrete time steps; at each step, one processor maybroadcast. That broadcaster is the processor b for which slot(b) = timemod n.The broadcast contains the broadcaster's ack bit, plus any data that may beneeded for other purposes. The broadcast will be attempted only if b is in itsown membership set, and will succeed only if b is not actively send-faulty in thatstep.The protocol is described by specifying how each processor p updates its localvariables membership and ack in terms of their previous values, the receiptor non-receipt of an expected broadcast, and the value of the ack bit carried inthat broadcast.We �rst de�ne the auxiliary predicate arrived(b; p) as true in a step if andonly if processor p receives a broadcast from b, and b is the expected broadcasterin that step. This predicate can be considered local to p because that processorcan sense the non-receipt of a broadcast.{ For each processor p, if the current broadcaster b is not an element of p'smembership, none of the local variables are changed.{ If p is the broadcaster b and is in its own membership set, it broadcastsack(b) and then updates ack(b) to true.6



{ Otherwise, when p is not the broadcaster b, each �eld of p is updated asfollows (notice that ack(p) is a local variable of p, and that ack(b) is providedin the broadcast received from b).� Updated membership: same as previous membership except possiblyfor p and b.� p is excluded in two cases:(a) (not arrived(b; p)) and not ack(p), or(b) arrived(b; p) and ack(b) and not ack(p).� b is excluded in the two cases:(c) not arrived(b; p), or(d) ack(p) and not ack(b).4� Updated ack: set to arrived(b; p) and (ack(b) or not ack(p) ).Observe that the updated value of ack(p) is true i� p retains b in itslocal membership (i.e., it is the negation of the disjunction of (c) and(d)). We say that the broadcast by b is acceptable to p if the updatedvalue of ack(p) is true.Thus, p removes itself if (a) two consecutive expected broadcasts are unac-ceptable, or (b) it considers the previous broadcast unacceptable, but b considersit acceptable. Moreover, p removes b if (c) no broadcast is received or (d) p con-siders the previous expected broadcast acceptable, while b does not.The broadcaster always assumes that its broadcast was correctly receivedeven when that was not the case, and thus it sets its ack bit to true. For otherprocessors, the ack bit will be true in the following step exactly when the broad-cast arrives and either the broadcaster views the previous expected broadcast asacceptable, or the receiver does not.4 Proof of CorrectnessThe key safety property of a group membership protocol is agreement: all themembership sets of nonfaulty processors should be identical. Furthermore, allnonfaulty processors should be included in that commonmembership set. Theseproperties are proved in Theorem 1. The progress property that all faulty pro-cessors are promptly diagnosed and removed from the common membership setis proved in Theorem 2, but much of the justi�cation is already present in theinvariant required to establish Theorem 1. A corollary is that the commonmem-bership set contains at most one faulty processor. In addition, faulty processorsare able to diagnose themselves, and do so promptly; this is proved in Theorem3. These three theorems correspond to the requirements stated in Section 2.4 There is a bug in the algorithm as just described: p should exclude itself (not b)when ack(p) and not ack(b) and p was the previous broadcaster and sent a falseack in that broadcast. The bug manifests itself only when where there are exactlythree processors in the membership, and its correction a�ects the proof of Theorem3. The bug and its correction were pointed out by N. Shankar in an email message on31 January 1998, and was independently discovered by Sadie Creese and Bill Roscoeof Oxford University using the FDR model checker.7



Theorem 1 (Agreement). The local membership sets of all nonfaulty processorsare always identical (and are called the agreed set) and contain all nonfaultyprocessors.This theorem is proved by induction on time, but its statement must �rstbe strengthened to yield an assertion that is inductive. In addition to claimingagreement among all nonfaulty processors, and that all nonfaulty processors areincluded in the agreed membership set, we must claim that all nonfaulty proces-sors have the same values for the ack bits at each step, that these bits indeedre
ect the intended meaning, and some additional facts about the diagnosis ofearlier errors. These are needed to guarantee that in steps in which a fault hasbeen detected, but not yet accurately ascribed, the next expected broadcasterwill be nonfaulty and will resolve the uncertainty.The invariant has the following conjuncts.(1) All nonfaulty processors have the same local membership sets.(2) All nonfaulty processors are in their own local membership sets.(3) All nonfaulty processors have the same value for ack.(4) For each processor p, ack(p) is true i� in the most recent previous stepin which p expected a broadcast from a processor b, either p was b, orarrived(b; p) ^ (ack(b) _ :ack(p)) in that step.(5) If a processor p became faulty less than n steps ago and q is a nonfaultyprocessor, either p is the present broadcaster or the present broadcaster isin p's local membership set i� it is in q's.(6) If a receive fault occurred to processor p less than n steps ago, then either pis not the broadcaster or ack(p) is false while all nonfaulty q have ack(q) =true, or p is not in its local membership set.(7) If in the previous step b is in the broadcaster slot, p is a nonfaulty processor,and arrived(b; p) does not hold, then b is faulty in the current step.(8) If the broadcaster b is expected by a nonfaulty processor, then b is eithernonfaulty, or became faulty less than n steps ago.Note that since all nonfaulty processors have identical membership sets andagree on which slot has been reached, they also agree on which processor is thenext expected broadcaster. Moreover, by (5), processors that became faulty lessthan n slots ago agree with the nonfaulty ones on whether the present slot isexpected to broadcast. The conjunct (5) is needed to show that newly faultyprocessors still agree with nonfaulty ones on the next expected broadcaster untilthey are diagnosed both by others and by themselves.Conjuncts (7) and (8) are needed to guarantee that no fault has occurred tothe processor in an expected slot following one that is newly silent. As mentionedearlier, the prompt diagnosis of receive faults seen in (6) is needed to prove (8).The fault arrival rate assumption thus links the seemingly independent questionsof how soon a fault is followed by a (possibly ambiguous) indication that somefault has occurred, and how soon after that another fault can occur.An important feature of the protocol is used in the proof and will be calledthe restricted-change lemma: if a change is made in the local membership set8



of p relative to the previous step, it is either in the membership of p itself, orin the membership of the broadcaster in the previous step. This can be seeneasily in the description of the protocol. Another useful property that can beseen directly in the description of the protocol is that arrived(b; p) will be trueprecisely when b = p or (b is not actively send-faulty, b is in its own membership,p is not actively receive-faulty, and both b and p are in p's membership).The conjuncts (4) and (7) simply record the intended meanings of ack bitsand the non-receipt of a broadcast, and follow directly from the assignments toack and the de�nition of arrived, respectively. We show the inductive argumentfor (5), (6), and (8) separately, and then return to (1), (2), and (3).Lemma [for conjunct (5)]: If the invariant has been true so far, conjunct (5) willbe true of the next step. That is, if in the next step p became faulty less thann steps ago, and q is nonfaulty, then either p is the broadcaster in that step, orthe broadcaster is in p's local membership set i� it is in q's.Proof: Let r denote the broadcaster in the next step. If p = r, the lemma holds.Otherwise, n � 1 steps ago r was in p's membership i� it was in q's, becauseboth p and q were then nonfaulty and agreed on their membership sets. In allsteps since then and up until the next step, r is not the broadcaster and is notp, and thus its membership in p's local membership set is not changed, by therestricted-change lemma. If q 6= r, the same reasoning holds for q and r, and weare done. If q = r, by the inductive hypothesis, n steps ago the local membershipsets of q and p both contained q (when both were nonfaulty), and q still containsitself, since it is nonfaulty in all steps up to the next step, while q is in themembership set of p by reasoning as before. utLemma [for conjunct (6)]: If the invariant has been true so far, conjunct (6) willbe true of the next step. That is, in the next step, if a receive fault occurred toprocessor p less than n time ago, then either p is not the broadcaster or ack(p) isfalse while all nonfaulty q have ack(q) = true, or p is not in its local membershipset.Proof: If in the next step p did not become faulty less than n steps earlier, orp is not the broadcaster, the assertion is true. Otherwise, since p became faultyless than n steps earlier, and is now the broadcaster, it was not the broadcastersince it became faulty. Thus until the next step (inclusive) the broadcaster ineach step was in p's local membership set if and only if it was in q's, for anynonfaulty q, by (5). If in all previous steps after p became receive-faulty, p andany nonfaulty q did not have the broadcaster at each step in their membershipsets, then the ack bit of p is false. This is true because it was set to false inthe step it became receive-faulty (by de�nition of ack and a receive fault) andhas not been changed since (again, using the de�nition of ack for nonexpectedslots). Similarly, for all nonfaulty q in this case, their ack bit is true: it was setto true when p became receive-faulty (since they all did receive a broadcast from9



a nonfaulty processor with which they had the same ack bit) and has not beenchanged since. Thus the assertion holds in this case.If there was a step since p became receive-faulty, but earlier than the next stepin which p and any nonfaulty q had the broadcaster r in their local membershipsets, then that r must be nonfaulty: by the fault arrival assumption it is not apreviously nonfaulty one that is newly send-faulty or receive-faulty within thelast n time units (because p has become faulty within the last n), and by theinductive hypothesis, if it had become receive or send-faulty more than n unitsago, it would already have been diagnosed in its previous broadcast slot or earlierand thus would not be expected. (Actually, by (6) in the step after its broadcastfollowing its becoming faulty, it would not be in the local membership set of anynonfaulty process.)So r is nonfaulty and thus will have ack(r) true in its broadcast. If p didnot receive that broadcast, then it did not receive two consecutive expectedbroadcasts and thus removed itself by rule (a). If p did receive the broadcast, itremoved itself by rule (b) because it received ack(r) as true while ack(p) wasfalse. Thus in the present step, p is not in its own local membership, as requiredby the assertion. utLemma [for conjunct (8)]: If the invariant has been true so far, conjunct (8) istrue in the next step. That is, if the broadcaster in that step p is expected bya nonfaulty processor q, then p is either nonfaulty or became faulty less than nsteps ago.Proof: By contradiction. Consider a situation where broadcaster p is expectedby nonfaulty processors q, but p became faulty at least n steps earlier. Thenthere is an earlier step in which p is the broadcaster, and it became faulty lessthan n steps earlier. By conjunct (6), if it became receive-faulty, then it willnot be in the membership set of any nonfaulty processor in the step followingits broadcast (using the conditions for removing a broadcaster), contradictingthe fact that it is expected now. If it became send-faulty, it also is not in themembership of any nonfaulty processor in the following step, by rule (c), againcontradicting the hypothesis. utTheorem 1 follows easily from the following claim.Claim. The conjuncts (1){(8) are an invariant.The Proof is by induction.Basis: All processors are nonfaulty initially and are in all local membership sets,the ack bits agree, and there have been no faults.Inductive step: Conjuncts (5), (6), and (8) have already been proved, while (4)and (7) are simple inductions using the de�nitions of the terms. Here we showthe remaining conjuncts (1){(3): membership sets of nonfaulty processors agree,10



they contain the nonfaulty processors, and the ack bits of nonfaulty processorsagree.Assume the invariant is satis�ed in all steps up to and including the m'thstep (that can be identi�ed with the value of time in the state). Consider them + 1'st. If the processor at slot (m mod n) is not a member of the agreed set,nothing changes in step m+1 except the update of time, and the result follows.Otherwise, the processor at slot (m mod n) is in the agreed set and is ex-pected by nonfaulty processors. If it is nonfaulty, it will broadcast, be receivedby all nonfaulty processors, and be maintained in their local membership set (thebroadcast and local ack bits agree by the inductive hypothesis). It also retainsitself in its local membership set. All nonfaulty processors will set ack to truein the next step. No nonfaulty processor will remove itself. This is true because:condition (a) does not hold, since a nonfaulty processor will broadcast and themessage is expected and thus is received; condition (b) does not hold becausethe agreed sets were the same in all previous stages, as were the ack bits. Thusall nonfaulty processors still have the same local membership sets and ack bits,and include themselves in their local membership sets.If the processor b at slot (m mod n) is in the agreed set but has a send fault orhas detected its own receive fault and removed itself from its local membershipset, no nonfaulty processor p will receive b even though it was expected (i.e.,arrived(b; p) is false), and all will mark it as absent in step m + 1 by rule(c) and will set ack to false in that step. No nonfaulty processors will removethemselves in this case: since arrived(b; p) is false, condition (b) is irrelevant,and (a) also does not hold, because the neighbors in expected slots around thesilent processor must be nonfaulty, by the fault model and the conjuncts (7) and(8). In particular, the broadcast in the most recent expected slot before b wasfrom a nonfaulty processor and thus must have arrived at p and had an ack bitthat agreed with that of all nonfaulty recipients (by the inductive hypothesis).Therefore the ack(p) bit in step m is true by conjunct (4). Thus in step m + 1the local membership sets and the ack bits of those nonfaulty processors remainidentical, and no nonfaulty processor removes itself.If the processor b in the broadcast slot is in the agreed set and in its localmembership set (and thus is expected by nonfaulty processors) but is receive-faulty, then by conjunct (8) the receive fault occurred within the last n steps,and by conjunct (6), b will broadcast ack(b) as false, while nonfaulty proces-sors p have ack(p) = true. Thus when the new broadcast occurs, all nonfaultyprocessors will remove the receive-faulty broadcaster by rule (d), and also setack to false. In this case too, no nonfaulty processor will remove itself from itslocal membership set: since arrived(b; p) is true, condition (a) is irrelevant, andcondition (b) does not hold since the broadcaster had a false ack bit when itbroadcast. utMost of the justi�cation for prompt diagnosis and removal of faulty processorswas provided in the proof of the invariant above. We have:11



Theorem 2 (Prompt Removal). A faulty processor is removed from the mem-bership sets of nonfaulty processors in the step following its �rst broadcast slotwhile faulty.Proof: As proved in conjunct (6) of the invariant, if a processor p becomesreceive-faulty, then in its next broadcast either ack(p) is false, while ack(q)is true for nonfaulty processors q, or p is not in its local membership set. In theformer case, p will be removed from the local membership set of q by rule (d)and in the latter case arrived(p; q) is false so that p is removed by rule (c). If pbecomes send-faulty, again arrived(p; q) is false, so p is removed by rule (c). utCorollary (One Faulty Member). In any step the agreed group contains at mostone faulty processor.Proof: Immediate from Theorem 2 and the fault arrival rate assumption. utAs part of the proof of the invariant needed for Theorem 1, in conjunct(6), weshowed that a processor that is not the next expected broadcaster after becomingreceive-faulty will remove itself from its local membership set. Here we showthat any faulty processor, including send-faulty ones and those that becamereceive-faulty just before broadcasting, will remove themselves from their localmembership sets.Theorem 3 (Rapid Self-Diagnosis). A newly faulty processor will remove itselffrom its local membership set (and thereby diagnose itself) when the slots of atmost two nonfaulty processors have been passed.Proof: If a processor p becomes send-faulty, all nonfaulty processors will set theirack bits to false in the step following that processor's slot, since the slot isexpected and no message is received. Similarly, if p just became receive-faulty inthe expected broadcast before its slot, it will broadcast ack as false, while thenonfaulty processors have ack = true, and thus will set their ack bits to false. Ineither case, p will set its ack bit to true in the step after it broadcasts. Until itsown or the previous broadcast, p was nonfaulty, and thus its local membershipset agreed with all other nonfaulty processors. By the invariant of Theorem 1,no nonfaulty processor will remove itself due to the new fault, thus the nextexpected slot of the nonfaulty processors is the same as the next expected slot ofthe faulty one. By the fault arrival assumption, the next expected slot must benonfaulty, since it cannot be newly faulty, and by the invariant it cannot be anundiagnosed old fault. Thus the newly faulty processor p will receive ack = falsein the message from the next expected slot, disagree with the broadcaster, andset its own ack bit to false. Since all nonfaulty processors receive that broadcastand agree with its ack bit, p will receive ack as true in the expected slot afterthat (using the fact that there are at least two nonfaulty processors within the12



group). At that point, the faulty processor p will remove itself from its localmembership set, using (b).5If a processor p becomes receive-faulty in its transition to the next step,but p is not the next expected broadcaster, it will remove the broadcaster fromits local membership set, but otherwise has the same local membership sets andnext expected slot as the nonfaulty ones. It will also set ack(p) to false. Again bythe fault model, the next expected broadcaster must be nonfaulty, will broadcastack as true, and the receive-faulty processor p will remove itself using (b). ut5 Discussion and ConclusionsThe fault arrival rate we assume in our fault model is at most one new faultyprocessor in any consecutive n+1 slots. This is clearly tight, since if n were usedin place of n+ 1, the algorithm fails. Consider a scenario with a receive fault ofthe processor just before the broadcaster, followed n steps later by a send faultof that same broadcaster. Since the receive-faulty processor will self-diagnoseand fall silent in its slot just before the subsequent send fault, all nonfaultyprocessors will not receive two consecutive expected broadcasts. They will allthen incorrectly remove themselves from their local membership sets.As this analysis shows, clustered faults can cause our algorithm to fail, thoughit is generally more robust than this worst case analysis suggests: the precise re-quirements are that the expected broadcaster must be nonfaulty when it followsa receive fault (unless it was that broadcaster that su�ered the receive fault inthe previous step) or the silence perpetrated by a successfully self-diagnosed re-ceive fault, and the next two expected broadcasters must be nonfaulty followinga send fault or the broadcast of a processor that su�ered a receive fault in theprevious step. Stochastic measurements are needed to determine more represen-tative measures of the fault arrival rates and patterns that can be tolerated.The requirement of two nonfaulty processors is also tight: if there are twoprocessors remaining in the group and one of them becomes faulty, then thereis no longer any possibility of distinguishing between a send and a receive fault.In either case, a broadcast is not received by the other processor, each willultimately remove the other from its local membership set, and neither will everself-diagnose.5.1 Robustness of AssumptionsSelf-diagnosis requires a very strong assumption on the behavior of faulty pro-cessors: namely, that they continue to execute the algorithm correctly for upton steps after becoming faulty. This is plausible when a send or receive fault istruly due to a communications problem, but is less so when it is the manifes-tation of a more serious failure. As noted previously, we assume that our group5 As noted in footnote 4, this argument is incorrect when there are only three pro-cessors. In the corrected algorithm, p excludes itself on the previous round, when itreceives ack = false. 13



membership protocol is part of a larger suite of protocols that can mask othertypes of faults, or transform their manifestations into those that can be toleratedby our algorithm. For example, checksums transform corrupted communicationsinto the send and receive faults that our algorithm can tolerate.Loss of clock synchronization or a \babbling idiot" failure could cause a pro-cessor to transmit outside its own slot, thereby possibly preventing nonfaultyprocessors from communicating on the bus and leading to complete failure ofthe system. These failure modes are handled using \Bus Guardians" in TTPand self-checking pairs in ARINC 659: in both cases, each processor's access tothe bus is mediated by a second component with an independent clock, so thatcoincident double faults are required to create a catastrophic failure. Computa-tion faults are likewise detected by pairwise comparison, or masked by voting,and higher-level diagnosis and recovery algorithms then isolate or reboot thea�icted processor [15,18{20]. In these cases, the failure mode is reduced to fail-silence, which manifests itself to our group membership protocol as a combina-tion of long-duration send and receive faults for the processor concerned. Since allnonfaulty processors promptly detect and exclude send-faulty processors with-out requiring the processor concerned to diagnose itself, the safety properties ofgroup membership are preserved even if the faulty processor is unable to executethe protocol correctly. Self-diagnosis of send and receive faults, which is assuredfor processors that do correctly execute our protocol, is moot for processors thatare in the grip of some larger crisis.Processor faults that are not masked or detected and reduced to fail-silence byother components of the protocol suite can be catastrophic for group membershipif they cause a processor to violate the protocol. For example, if the next expectedprocessor following a send fault incorrectly sends ack = true, then all otherprocessors will diagnose themselves as receive-faulty and exclude themselves fromthe group. In TTP, such a collapse causes reversion to the blackout operatingmode. More insidious execution faults could allow a processor that su�ers areceive fault not to diagnose its failure. Since receive faults (other than of thenext expected broadcaster) require the a�icted processor to signal its failure(by remaining silent), such an execution fault would allow the faulty processorto remain a member of the group.The possibility of such catastrophic or insidious faults is the price paid forthe low overhead of our group membership protocol. Experiments with an archi-tecture similar to TTP [6] show that the incidence of such fail-silence violationsis su�ciently rare that they present an acceptably low risk to the system (giventhe other mechanisms present in the total suite of protocols).5.2 Formal Analysis, and Future WorkWe have described and proved correct a protocol for synchronous group mem-bership that, driven by practical considerations, trades a very restrictive faultmodel in return for very low communications overhead|just one bit per mes-sage. Despite the paucity of information carried by each message, the protocolallows rapid and accurate identi�cation and elimination of faulty processors.14



The reasoning that supports this claim, however, requires inferences to be madeover sequences of messages; this, in turn, requires the statement of correctnessto be strengthened signi�cantly in order to obtain one that is inductive andrequires a surprisingly intricate proof with extensive case-analysis. We founddetermination of an adequately strong (and true!) invariant, and developmentof the corresponding proof, to be quite challenging, and turned to formal tech-niques for assistance. We used the Mur� state-exploration system [3] to examineinstances of the protocol for the purposes of debugging the protocol, its faultmodel and its assumptions, and also to check candidate invariants. Using Mur�,we were able to exhaustively check the behaviors of a ring of six processors withup to three faults. This required some tens of minutes (on a Sparc 20) and 100MB of memory and entailed exploration of almost two million states. We arecurrently formalizing the general case and subjecting our proof of correctness tomechanical checking using the PVS veri�cation system [13].For the future, we are interested in systematic techniques for deriving strength-ened invariants of the kind needed here, and for generating the proof of correct-ness. Some of the reasoning resembles that seen in the backward reasoning ofprecedence properties in temporal logic [11].The group membership protocol presented here has no provision for read-mitting previously-faulty processors that now appear to be working correctlyagain. Simple extensions, such as allowing a repaired processor to just \speakup" when its slot comes by, are inadequate. (A processor that has a receive faultjust as the new member speaks up will not be aware of the fact and its localmembership set will diverge from that of the other processors; a second faultcan then provoke catastrophic failure of the entire system.) We are aware ofsolutions that do work, at the cost of strong assumptions on the fault-detectioncapability of the CRCs appended to each message, and plan to subject theseto formal examination. TTP encodes its \critical state" in its CRC calculation,and the ack bit of our abstract protocol is in fact encoded implicitly in the CRCand recovered by recalculation of the CRC for each of the two possible valuesrepresented by that bit.We are also eager to explore more of the highly optimized and integratedalgorithms seen in industrial protocols for safety-critical distributed systems,such as TTP and ARINC 659. For example, the restrictive fault model used forour group membership protocol is partly justi�ed by the existence of a blackoutoperating mode to deal with more severe, or clustered, faults. An interestingchallenge for the future is to establish the fault coverage of this combination,and the correctness of the transitions between di�erent operating modes in thepresence of faults. 15
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