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Abstract. In this paper we report on a novel approach for uniform en-
coding of hash functions (but also other cryptographic functions) into
propositional logic formulae, and reducing cryptanalysis problems to the
satisfiability problem. The approach is general, elegant, and does not
require any human expertise on the construction of a specific crypto-
graphic function. By using this approach, we developed a technique for
generating hard and satisfiable propositional formulae and hard and un-
satisfiable propositional formulae. In addition, one can finely tune the
hardness of generated formulae. This can be very important for different
applications, including testing (complete or incomplete) sat solvers. The
uniform logical analysis of cryptographic functions can be used for com-
parison between different functions and can expose weaknesses of some
of them (as shown for md4 in comparison with md5).

1 Introduction

Hash functions have wide and important role in cryptography. They produce
hash values, which concisely represent longer messages or documents from which
they were computed. Examples of hash functions are md4, md5, and sha. The
main role of cryptographic hash functions is in the provision of message integrity
checks and digital signatures.

The subject of research presented in this paper is analysis of hash functions
in terms of propositional reasoning.1 We will try to shed a new light on hash
functions and to address several important issues concerning hash functions and
sat problem. First question considered is whether the problem of inverting a
hash function can be reduced to a sat problem; if yes, how it can be done
effectively. Section 4.1 gives one methodology for this.

Another question of interest is: can hash functions be used for generating
hard instances of sat problem? The need for hard instances of sat problem is
well-explained in [1]:

1 The work presented in this paper is, in a sense, parallel to [12], as it investigates hash
functions in a similar manner the work reported in [12] investigates des algorithm.
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“A major difficulty in evaluating incomplete local search style algo-
rithms for constraint satisfaction problems is the need for a source of
hard problem instances that are guaranteed to be satisfiable. A stan-
dard approach to evaluate incomplete search methods has been to use
a general problem generator and a complete search method to filter out
the unsatisfiable instances. Unfortunately, this approach cannot be used
to create problem instances that are beyond the reach of complete search
methods. So far, it has proven to be surprisingly difficult to develop a
direct generator for satisfiable instances only.“

In [1], it is claimed that cryptographic algorithms cannot be used for gen-
erating interesting hard sat instances, as the problems are too hard (require
exhaustive search) and cannot be fine-grained. In this paper, we question these
claims and show how hash functions can be used for generating satisfiable sat
instances of finely tuned hardness. We will also consider generating unsatisfiable
sat instances. Namely, while satisfiable instances are required for testing com-
pleteness, unsatisfiable instances are required for testing soundness2 of complete
sat solvers.

Why it is difficult to randomly generate hard satisfiable instances of sat
problem is also discussed in [8]. A survey [4] points that generating hard solved
instances of sat problem is equivalent to computing an one-way function, which
in turn is equivalent to generating pseudo-random numbers and private-key cryp-
tography. The work [4] also discusses how a fixed-length one-way function can
be used to generate hard solved instances of 3sat. We are not aware that this
proposal has been used in practice and it seems that it would be very difficult to
apply it to real-world hash functions. We believe that the approach we present
in this paper is more elegant and applicable to state-of-the-art hash functions,
provided their implementations. In addition, our approach can be used for pro-
ducing both satisfiable sat instances of finely tuned hardness and unsatisfiable
sat instances of finely tuned hardness.

It is interesting whether logical analysis could expose weaknesses of some
hash functions. Finding such a weakness often relies on a human expertise and
is most often specific for a certain sort of problems. Therefore, it would be good
if a (uniform) logical analysis could provide a deeper understanding of nature
of hash functions and expose their potential weaknesses. Experimental results,
given in §6, based on uniform logical analysis, show that md4 function is much
weaker than md5 (as expected).

Another very interesting question is whether such sat formulae are the hard-
est sat formulae (within the class of formulae with the same number of vari-
ables). We will briefly comment on this question and possible ways for investi-
gating it within our plans for future work.

2 Since SAT solvers are becoming a standard tool in many critical industrial applica-
tions, testing the solver for soundness is of uttermost importance.
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2 Background

Hash Functions. A hash function hash is a transformation that takes an
input sequence of bits m (the message) and returns a fixed-size string, which is
called the hash value (also the message digest, the digital fingerprint). The basic
requirement for a cryptographic hash function is that the hash value does not
reveal any information about the message itself, and moreover that it is hard
to find other messages that produce the same hash value. If only a single bit of
the message is changed, it is expected that the new hash value is dramatically
different from the original one. A hash function is required to have the following
features:

Preimage resistant. A hash function hash is said to be preimage resistant if it
is hard to invert, where “hard to invert” means that given a hash value h,
it is computationally infeasible to find some input x such that hash(x) = h.

Second preimage resistant. If, given a message x, it is computationally infeasible
to find a message y different from x such that hash(x) = hash(y), then hash
is said to be second preimage resistant.

Collision-resistant. A hash function hash is said to be collision-resistant if it is
computationally infeasible to find two distinct messages x and y such that
hash(x) = hash(y).

A hash function must be able to produce a fixed-length output for an
arbitrary-length message. This is usually achieved by breaking the input into
series of equal-sized blocks, and then operating on these blocks in a sequence of
steps, using compression functions. Often, the last block processed also contains
the message length, which improves the properties of the hash. This construc-
tion is known as the Merkle-Demag̊ard structure [5,13], and the majority of hash
functions in use are of this form, including md4, md5 and the sha family.

md4 and md5 are message-digest algorithms developed by Ron Rivest [16,17].
These two algorithms take a message of arbitrary length and produce a 128-bit
message digest. Attacks on versions of md4 with either the first or the last rounds
missing were developed very quickly. Also, it was shown how collisions for the full
version of md4 can be found in under a minute on a typical PC. md5 algorithm
is basically an improved version of md4. The algorithm consists of four distinct
rounds, which have a slightly different design from that of md4. Collisions for the
full md5 were announced in 2004 [19], and the attack was reported to take only
one hour on an ibm P690 cluster. This year it was demonstrated that using the
methodology of previous attacks it is possible to construct two X.509 certificates
with different public keys and the same md5 hash value [11]. However, this
still does not mean that the properties preimage resistant and second preimage
resistant for md5 are completely compromised.

sat Problem. Boolean satisfiability problem (sat) is the problem of deciding
if there is a truth assignment under which a given propositional formula (in con-
junctive normal form) evaluates to true. It was shown by Cook [3] that sat is
np-complete. This was the first problem shown to be np-complete, and it still
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holds a central position in the study of computational complexity as the canon-
ical np-complete problem. The importance of the sat problem is also grounded
in practical applications, since many real-world problems (or their components)
in areas such as AI planning, circuit satisfiability and software verification can
be efficiently reformulated as instances of sat. Therefore, good sat solvers are
of great importance and significant research effort has been devoted to finding
efficient sat algorithms.

Due to a general belief that a polynomial time algorithm for sat is not likely
to be found3 (i.e., it is generally believed that p �= np), the only way to evaluate
a solver is by its performance on the average, in the worst case, or on a class of
sat instances one is interested in. Also, sat instances on which the algorithms
perform poorly, characterize the weaknesses of these algorithms and can direct
further research on improving them.

Experiments suggest that there is a phase transition in sat problems between
satisfiability and unsatisfiability as the ratio of the number of clauses and the
number of variables is increased [14]. It is conjectured that, for different types of
problem sets, there is a value c0 of L/N , which is called a phase transition point
such that:

lim
N→∞

s(N, [cN ]) =
{

1, for c < c0
0, for c > c0

,

where s(N,L) is a satisfiability function that maps sets of propositional formu-
lae (of L clauses over N variables) into the segment [0, 1] and corresponds to
a percentage of satisfiable formulae. Experimental results also suggest that in
all sat problems there is a typical easy-hard-easy pattern as the ratio L/N is
increased, while the most difficult sat formulae for all decision procedures are
those in the crossover region.

zChaff sat Solver. Majority of the state-of-the-art complete sat solvers are
based on the branch and backtracking algorithm called Davis-Logemann-Love-
land algorithm (dll) [6]. Some of the algorithms also use heuristic local search
techniques, but this makes them incomplete (they don’t guarantee to find a sat-
isfying assignment if one exists). In addition to dll, these complete algorithms
use a pruning technique called learning. Learning extracts and memorises infor-
mation from the previously searched space to prune the search in the future.
Also, in order to improve the efficiency of the system, techniques as preprocess-
ing, sophisticated branching heuristics, data structures, and random restarts are
used (for a survey, see e.g. [20]). There are many sat packages available, both
proprietary and public domain. It is considered that one of the best complete sat
solvers nowadays is the zChaff solver [15]. Besides its smart pruning techniques,
zChaff is highly optimised, and achieves remarkably good results in practice. For
that reason we chose it as the main sat solver for our experiments.

3 Clay Institute for Mathematical Sciences is offering a one million dollar prize for
a complete polynomial-time sat solver or a proof that such an algorithm does not
exist (the p vs np problem).
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3 Transforming Cryptanalysis of Hash Functions into sat
Problem

Let hash be a hash function generating a hash value of a fixed length N . We
assume that hash is a hash function with a good distribution of output values.
This means that for every (or almost every) N -bit sequence h, there is an N -bit
message m having h as the hash value, i.e. hash(m) = h). In other words, we
assume that the hash function is a good approximation of a permutation on N -
bit strings. This holds for hash functions md4 and md5, and is important for our
investigation. Since the problem of inverting a hash value is highly intractable,
in order to scale down the problem hardness we also consider input sequences
of length less than N . Let p1p2 . . . pM denote the bits of an input message (of
length M , M ≤ N). The hash function takes this input sequence and transforms
it into a sequence of of bits h1h2 . . . hN . For hash functions we are interested in,
this transformation is computable and, moreover, expressible in propositional
logic, i.e., the resulting hash bits hi can theoretically be expressed as formulae
with p1, p2, . . . , pM as variables. These formulae are very complex as they reflect
the inherent complexity of the hash function, but obtaining them effectively is
still possible (one method for doing it is described in §4). Let us denote the
formula that corresponds to the computation of the bit hi of the hash value as
Hi(p1, p2, . . . , pM ).

Preimage Resistance. When analysing preimage resistance of a hash function,
the goal is, given a sequence h1h2 . . . hN (the hash value) and the length of the in-
put message M to determine values p1, p2, . . . , pM that generate this hash value.
In other words, we are searching for a valuation v such that Iv(Hi(p1, p2, . . . ,
pM )) = hi (i = 1, 2, . . . , N), where Iv is the interpretation induced by v. Thus,
the valuation v must fulfill

Iv(Hi(p1, p2, . . . , pM )) =
{

1 if hi = 1
0 if hi = 0 .

Further, let Hi be defined as

Hi(p1, p2, . . . , pM ) =
{
Hi(p1, p2, . . . , pM ) if hi = 1
¬(Hi(p1, p2, . . . , pM )) if hi = 0 .

Obviously, formula Hi is true under valuation v if and only if the hash func-
tion hash transforms the message corresponding to v into a hash with the i-th
bit equal to hi. The formula H is defined as follows:

H(p1, p2, . . . , pM ) =
∧

j=1,2,...,N

Hj(p1, p2, . . . , pM ) .

In order to invert the sequence h1, . . . , hN , we have to determine a valuation
that satisfies the formula H(p1, p2, . . . , pM ). Practically, finding such a valuation
is of the same difficulty as to determining whether H(p1, p2, . . . , pM ) is satisfiable.
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Hence, we have reduced finding the preimage of a hash function to sat problem.
This reduces the problem of finding the preimage of a hash function to SAT.

Assuming that the hash function is preimage resistant, it is very likely that
the formula H(p1, p2, . . . , pM ) (for large M) is hard to test for satisfiability (oth-
erwise, we would have an effective mechanism for computing the preimage, con-
tradicting the generally accepted assumption of preimage resistance for functions
such as md5). This gives us a method for generating hard and satisfiable sat
instances:

1. select a random sequence m of length M ;
2. compute the hash value h1h2 . . . hN of m;
3. using the above construction, generate the propositional formula H.

Having that valuation induced by m satisfies H by the construction, it is
guaranteed that H is satisfiable. In addition, it is sound to assume that H is
hard to test for satisfiability. So, this way we can generate hard and satisfiable
sat instances for different values of M . Obviously, the bigger M , the harder
instance generated.

Second Preimage Resistance. For this property, we assume we are given a
sequence h1h2 . . . hN (the hash value), the length M of the input message, and
also the input bits p1, p2, . . . , pM that generated this hash value. Our goal is
to determine another values q1, q2, . . . , qM that generate the same hash value.
Similarly as above, this reduces to satisfiability of the following formula4:

H′(q1, q2, . . . , qM ) = H(q1, q2, . . . , qM ) ∧ (qp11 ∨ qp22 ∨ . . . ∨ qpM

M )

where

qpi

i =
{¬qi if pi = 1
qi if pi = 0 .

The additional clause forces the messages p1p2 . . . pM and q1q2 . . . qM to differ in
at least one bit.

Assuming that the hash function is second preimage resistant, it is very likely
that the formula H′(q1, q2, . . . , qM ) is hard to test for satisfiability for large M .
Also, for a good hash function, it is highly unlikely that there is a collision with
the length of colliding input messages being less then N . So, it is extremely likely
that the formula H′(q1, q2, . . . , qM ) is unsatisfiable for M < N .

This gives us a method for generating hard and unsatisfiable sat instances:

1. select a random sequence m of length M (M < N);
2. compute the hash value h1h2 . . . hN of m;
3. using the above construction, generate the propositional formula H′.

This way we can generate hard and unsatisfiable sat instances for different
values of M . Obviously, the hardness of generated sat instances grows with M .
4 Note that this condition is stronger than the condition given in §2 — namely, the

above condition requires that two messages (with the same hash value) have the
same length. However, our intention is to use H′ to generate hard unsatisfiable sat
instances and this additional restriction can actually only bring us some good.
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Collision Resistance. To check the collision resistance property, one is looking
for two different sequences p1p2 . . . pM and p′1p

′
2 . . . p

′
M , with the same hash value.

Collision resistance of the hash function can be reduced to satisfiability of the
formula

∧
i=1,...,N

(Hi(p1, p2, . . . , pM ) ⇔ Hi(p′1, p
′
2, . . . , p

′
M )) ∧ ¬

∧
i=1,...,M

(pi ⇔ p′i) .

In this case, the only parameter of the formula is M , the length of the colliding
messages we are searching for. The number of variables in the given formula, and
hence the complexity of search, doubles with M . This makes these feature too
hard and we restricted our investigation only to formulae H and H′ (described
as above).

4 Encoding of Hash Functions into Instances of sat
Problem

It is clear from the previous section how the properties of hash functions can be
encoded into sat instances. In this section we introduce a general framework for
such encoding based on existing implementations of hash algorithms. Further,
we discuss how to transform the acquired propositional formula into cnf.

4.1 Uniform Encoding on the Basis of Hash Function
Implementation

Since a good hash algorithm doesn’t depend on the secrecy of the algorithm,
all of the popular hash algorithms are available both in a descriptive form and
in form of implementations in all popular programming languages. Most of the
hash algorithms include thousands of logical operation on input bits. This makes
any handcrafting of the propositional formulae we are interested in practically
an impossible task. Here we present a framework that allows easy generation
of propositional formula of a hash transformation, based entirely on an existing
implementation of the algorithm in C/C++5. This methodology for encoding
cryptographic functions into logical formulae is general and can be applied not
only to hash functions, but also other algorithms (e.g., des). Our approach
is considerably simpler, faster and more reliable than one used in [12] where a
special hand-crafted program was designed to simulate des for the same purpose.
Also, this approach is independent of a concrete hash algorithm, which makes it
readily reusable for further investigations on other cryptographic functions.

The implementation relies on a feature of the C++ language called operator
overloading. Operator overloading is a specific case of polymorphism, in which
5 Due to a requirement that hash algorithms must be extremely fast, C/C++ is the

most common programming language for implementing hash functions. All avail-
able hash functions used in practice are coded in C/C++, so this does not restrict
applicability of the method.
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operators commonly used in programming such as +, * or =, are treated as
polymorphic function, and as such, they can have different behaviours depending
on the types of its operators. This feature is usually only a syntactic sugar, and
can be emulated by function calls. For example, x + y * z can be rewritten as
add(x, multiply(y, z)). Operator overloading is a common place of criticism
when comparing programming languages, since it allows programmers to give to
the same operators completely different semantics. This can lead to code that is
extremely hard to read, and more important, can lead to errors that are hard
to trace. It is considered a good practice to use operator overloading only when
necessary and with much care.

We take advantage of offered ambiguous semantics in the following way. In-
stead of using the algorithm to actually compute the numerical hash value, we
change the behaviour of all the arithmetic and logical operators that the algo-
rithm uses, in such a way that each operator produces a propositional formula
corresponding to the operation performed. This way one can run the algorithm
on general logic variables and produce a formula representing the computation
of the algorithm. Afterwards, if needed, one can evaluate the formula obtained
by this process, with a specific input message as an argument and get the explicit
hash value of the message.

Redefining operators does not (and must not) affect the flow of the algorithm.
Since the aim is to record the complete computation of the hash algorithm in
one run, this construction can work only if no data-flow dependent conditional
structures exist in the code. This restricts the class of the hash functions the
approach can handle to the class of linear algorithms (with most, or all, hash
functions falling into that category). Some branching and conditional algorith-
mic structures could also be handled automatically, but it would require more
sophisticated interventions in the code together with compiler-like tools that
would be able to augment the code appropriately.

Implementation and Overloading of Operators. In the standard imple-
mentations of hash functions, 32-bit integers are usually used to represent se-
quences of 32 bits. To represent a longer bit-array, the array is divided into
32-bit integers, and the computation is entirely performed on these integers. For
instance, to represent a sequence of 128 bits of output for md4 and md5, four
such integers are used. The first step is to create a Word data type that would
simulate the functionality of 32-bit unsigned integers. The integers in the origi-
nal implementation will then be replaced by objects of the new Word data type.
With this data type, each bit of an integer is represented by a propositional
formula. These formulae represent a complete logical equivalent of the original
computation that produced the value of the integer, one formula per bit. Having
this representation, the next step is to define the operators that are used in the
hash algorithm for the new data type, so that they consistently represent the
propositional counterpart of the expected computation.

Implementation of bitwise logical operators + (and), | (or), ^ (xor) and ~
(not) is straightforward. For example, the overloaded & operator takes two Word
objects and creates a new Word object with every bit being an and-formula of
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the formulae on the corresponding bits of the input objects. These subformulae
represent the logic behind the original & operator — each output formula is an
and-formula of the two corresponding input formulae. For both space and time
efficiency, subformulae are not copied into the new formulae, but just linked. See
Fig. 1 for our implementation of the ~ operator.

Word Word::operator ~ () const {
Word notWord; // The not of the word

/* Compute the not */
for(int i = 0; i < bitArray.size(); i ++) {

Formula *f = new FormulaNot(bitArray[i]);
notWord.setFormulaAt(i, f);

}

return notWord; // Return the calculated not
}

Fig. 1. Implementation of the ~ operator

For the arithmetic operators the same logic as for logical operators is applied,
but the things are a bit more complicated. This complexity arises from the fact
that the value of a bit in the result depends on all the previous bits of the
operands. See Fig. 2 for our implementation of the += operator.

Word& Word::operator += (const Word &w) {
Formula* c = new FormulaNT; // The carry bit

/* Compute the sum, starting from the least significant bit */
for(int i = bitArray.size() - 1; i >= 0; i --) {

Formula *andF = new FormulaAnd(bitArray[i], w.bitArray[i]);
Formula *orF = new FormulaOr(bitArray[i], w.bitArray[i]);
Formula *xorF = new FormulaXor(bitArray[i], w.bitArray[i]);

Formula* sumF = new FormulaXor(xorF, c); // Sum of the bits and the carry bit
c = new FormulaOr(andF, new FormulaAnd(c, orF)); // New carry bit of the sum

setFormulaAt(i, sumF); // Set the sum formula at i-th bit
}

delete c; // Delete the last carry
return *this; // Return the calculated sum

}

Fig. 2. Implementation of the += operator

Combining the Implementation with Existing Hash Algorithms. We
now have a C++ library that defines the new Word data type and implements
all the operators that the hash procedure uses. Combining this library with an
existing C/C++ implementation of a hash procedure is an easy task. All that is
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needed is to take the source files and replace the definitions of all integer objects
that are used in computation by the newly defined Word type. This should suffice
to get a running implementation that generates a formula corresponding to the
computation of the hash function. One should be careful to avoid replacing the
auxiliary objects in the source file, since we are not interested in them, and this
would only complicate the computation. Example of such objects are constants,
indexes and counters in simple counting loops. Although replacing them will
not do any harm to the process, the transformation will be much faster if they
retain their original type. See Fig. 3 for example how we modified a part of md5
implementation to fit our needs. The original md5 source had unsigned int
type in places of Word type. We tested our implementation and a range of tests
(including the original test cases from [16,17]) confirmed its correctness.

inline Word MD5Coder::F(const Word &x, const Word &y, const Word &z) {
return (((x) & (y)) | ((~x) & (z)));

}

inline void MD5Coder::FF(Word& a, const Word& b, const Word& c, const Word& d,
const Word& x, unsigned int s, unsigned int ac)

{
a += F(b, c, d); a += x; a += ac; a <<= s; a += b;

}

void MD5Coder::encodeBlock(int block) {
...
FF (a, b, c, d, message[blockStart + 4], S11, 0xf57c0faf);
...

}

Fig. 3. Application of the implemented Word class on a part of the md5 algorithm

4.2 Generating Conjunctive Normal Form

In the previous section, we showed how to generate a formula H corresponding
to computation of the hash algorithm. In order to test this formula for satisfi-
ability, one first needs to transform H into conjunctive normal form (cnf). A
propositional formula is said to be in cnf if it is a conjunction of one or more
disjunctions of literals. Computing an cnf equivalent of a simple formula is a
straightforward but exponential task6. There is no unique cnf of a formula,
and one can apply several different algorithms to make the cnf transformation
(trivial recursive transformation, term-rewriting based, sequent calculus based,
etc.). The main problem with these algorithms is that large real world formulae
tend to be extremely huge. This, together with exponential complexity of the
transformation, makes efficient transformation almost an impossible task.

We tried several standard approaches for computing the cnf equivalent of
the formula H, but all of them failed even for relatively small message lengths.
6 An example of a formula that requires exponential space, and thus also time, is

(p1 ∧ q1) ∨ (p2 ∧ q2) ∨ . . . ∨ (pn ∧ qn).
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Either they did not terminate in a reasonable amount of time, or they failed due
to high memory requirements. Therefore, we chose a more reasonable approach,
which in turn has some other downsides.

Tseitin Definitional Normal Form. If one drops the requirement of equiva-
lence with the original formula, and only keeps sat-equivalence7, any formula F
can be transformed efficiently into a sat-equivalent cnf. This translation (due
to Tseitin [18]) is linear in both the size of the resulting cnf and the complexity
of the translation procedure. Since our formulae contain only negation, standard
binary logical connectives and, additionally, xor, the resulting cnf is in ≤3cnf
form. That is, every clause has at most 3 literals. Generally, any logical formula
that contains at most n-ary logical operators can be transformed to ≤(n+1)cnf
form. This is achieved by introducing a new variable for every logical operation,
and then imposing constraints that preserve the semantics of the operation.

We describe the transformation briefly. Let Φ be an arbitrary formula, and let
Sub(Φ) denote the set of all sub-formulae of Φ. For each non-atomic sub-formula
ψ ∈ Sub(φ), we add a new propositional variable pψ. In case ψ is itself atomic,
we take pψ = ψ. Now, consider the formula

pΦ ∧
∧

φ∈Sub(Φ)
φ=φ1⊗φ2

(pφ ⇔ (pφ1 ⊗ pφ2)) ∧
∧

φ∈Sub(Φ)
φ=¬φ1

(pφ ⇔ ¬pφ1) . (1)

It is not hard to see that formula (1) is sat-equivalent to Φ. The variable pΦ
imposes that Φ is true by propagating the actual evaluation of the formula further
up the formula tree using the introduced equivalences.

Transforming formula (1) into cnf is straightforward (see Table 4.2 for trans-
formation rules). Every conjunct in (1) is transformed into cnf with at most 4
clauses, each with at most 3 literals. Thus, the transformation is linear in the
size of the formula.

Table 1. Tseitin definitional form transformation rules

Type of formula Corresponding clauses

φ = ¬φ1 (pφ ∨ pφ1) ∧ (¬pφ ∨ ¬pφ1)

φ = φ1 ∧ φ2 (pφ ∨ ¬pφ1 ∨ ¬pφ2) ∧ (¬pφ ∨ pφ1) ∧ (¬pφ ∨ pφ2)

φ = φ1 ∨ φ2 (¬pφ ∨ pφ1 ∨ pφ2) ∧ (pφ ∨ ¬pφ1) ∧ (pφ ∨ ¬pφ2)

φ = φ1 � φ2
(¬pφ ∨ pφ1 ∨ pφ2) ∧ (¬pφ ∨ ¬pφ1 ∨ ¬pφ2)
∧(pφ ∨ ¬pφ1 ∨ pφ2) ∧ (pφ ∨ pφ1 ∨ ¬pφ2)

The main weakness of the definitional cnf transformation is that the number
of clauses and variables that are used is quite big. The size of a this cnf form
can be reduced significantly by using implications instead of equivalences for

7 Two formulae F and G are said to be sat-equivalent when it holds that F is satis-
fiable iff G is satisfiable (for example p and p ∧ q).
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subformulae that occur in one polarity only [7]. Applying such optimization
here does not yield a considerable decrease, since the vast majority of operations
is based on xor operations, and this makes the subformulae bipolar.

In our case, when analyzing a hash function of fixed length N , since H is
a conjunction of the formulae Hj , we transform each Hj into a cnf, and com-
bine them together into a cnf for H. This yields a cnf with M unit clauses
corresponding to each Hj . These can be eliminated by unit propagation, but we
decided to leave this to the sat solver.

4.3 The HashSAT Formula Generator

We implemented a program that uses the modified implementations of md4 and
md5 hash algorithms and transforms the formulae H and H′ to definitional cnf.
This program takes various parameters, including a hash function to be used, the
length of a message to encode, the number of rounds of the selected hash function
to encode (we use this parameter to allow more flexibility on the hardness of
sat instances we generate), etc. The program produces output in the standard
DIMACS CNF format8. It is a simple textual representation, with one line for
each clause. The literals in the clauses are represented as numbers, positive or
negative depending on the polarity of the literal. This is a common format for
sat solvers, so the files the program generates can be used as benchmarks for
sat solvers other than zChaff. It is worth noting that this process for generating
the formulae is very efficient. For instance, a full md5 sat problem for a 128-bit
message is generated in under 1.2s with using about 16MB of memory on a Linux
2.60GHz Pentium 4 workstation.

5 Experimental Results

In this section we present our experimental results with sat formulae generated
on the basis of the hash functions md4 and md5. We used the methods described
in §3 and §4 to generate benchmarks according to the first two properties of
hash functions (preimage resistance and second preimage resistance). For each
message length M we generated 50 formulae in the way described in §3; bits of
starting messages m were generated randomly, each bit taking value 0 or 1 with
equal probability.

For the maximal message length the generated problems proved to be too
hard to test for satisfiability, so we had to scale down the hardness of the prob-
lems. One way is to decrease the message lengths (value M) and hence — de-
crease the search space. The other approach relies on the inner structure of
hash functions: most of hash functions work on equal size block, applying basic
transformations grouped in rounds. Both md4 and md5 transformations have 4
rounds. By reducing the number of rounds the hash functions become simpler,
so the corresponding sat instances become easier.

8 For description see <http://www.satlib.org/Benchmarks/SAT/satformat.ps>.
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Fig. 4. Preimage resistance (left) and second preimage resistance (right) for md5. Time
scale is logarithmic, CPU time is given is seconds. Separate lines are given for weakened
versions with number of rounds from 1 to 3.
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Fig. 5. Growth of clauses (left) and variables (right) in the cnf with size of the input
messages for md4 and md5

Our results show that, in the worst case, the hash properties, as expected,
behave exponentially (against M) when analysed using the described translation
to sat (see Fig. 4). The problems for M > 16 needed more time than we set as
the time limit (10000s), but we believe that the exponential growth for the CPU
time spent, continues for M > 16. Note that the restriction to one round gives
only trivial problems.

In contrast to the exponential growth for satisfiability testing (in M), the
number of clauses grows rather by some small linear factor (see Fig. 5). This
means that the we are able to scale the hardness of the formulae arbitrary (for
M from 1 to 128), without a significant increase in size of the formula itself.

Figure 6 (left) shows that the function md4 is more vulnerable to inverting
based on the uniform logical analysis. This is expected, as md5 is generally
believed to be of better quality compared to md4.
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Fig. 6. Comparison of md5 and md4 preimage resistance with logarithmic scale for
time (left) and L/N ratio with the message length for md5 (right)

6 Future Work

In the previous sections, we analysed propositional formulae obtained from the
input sequences of length M , where M ≤ N . The value M was used to con-
trol the hardness of the problems generated. Alternatively, we could control the
problem hardness by the size of the used part of the output: for the preimage
resistance feature, we can analyse the following formulae (for the fixed size of the
input sequences — the same as the size of the output — N): Hi(p1, p2, . . . , pN ) =∧
j=1,2,...,iHj(p1, p2, . . . , pN ). Note that the functions Hi take into account only

first i bits of the output. Assuming that the hash function analysed is permu-
tation, for any hash value h1h2 . . . hN there is an input of size N that produces
it. So, this gives us another method for generating hard and satisfiable sat in-
stances: (1) select a random bit sequence of length N and use it as a hash value;
(2) using the above, construct the propositional formula Φi = Hi(p1, p2, . . . , pN).
Formulae Φi are hard and satisfiable. The bigger i (i ≤ N), the harder formu-
lae. In a similar manner we could generate unsatisfiable sat instances. Analysis
based on such formulae is the subject of our future research. We will also look at
the combinations of these two approaches — controlling problem hardness via
both the size of input and the size of output.

One of our motivating ideas for the research presented here was to investigate
whether sat instances generated on the basis of (good) hash functions are among
the hardest instances (in terms of the phase transitionphenomenon in the satprob-
lem [14]).Unfortunately,we are still unable to answer this question as the generated
formulae do not fit the pattern of some class of randomly generated sat instances,
i.e., variables in the clauses are not distributed uniformly. For the generated for-
mulae, the values L/N (number of clauses ratio number of variables) for md5 are
shown in Fig. 6 (right) — these values for M = 1, . . . , 128 are rather stable and
range between 3.25 and 3.26 (both with the unit propagation performed or not).
Recall that, for some sat model, the value L/N for the hardest instances is equal
to the phase transition point for that sat model. So, if the variables in our gener-
ated formulae were distributed uniformly, and if they indeed the hardest instances
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(among the formulae with the same distribution on clause length), then the phase
transition point for this sat model would be around 3.25. However, when the unit
propagation is performed, in our generated formulae there are around 40% clauses
of length 2 and around 60% clauses of length 3 (forM = 1, . . . , 128). For such dis-
tribution of clause length (and for uniform distribution of variables), [9] approxi-
mates the phase transition point at 1.8, and [2] approximates the phase transition
point between 2.1 and 2.4, both lower than 3.25. These issues will be subject of
our future research — we will try to further investigate the class of generated sat
instances (with non-uniform variable distribution) and whether the instances that
correspond to md5 are indeed the hardest among them. We will try to answer these
questions following the ideas from [10].

We are planning to further investigate alternative ways for transforming ob-
tained formulae to cnf (apart from Tseitin’s approach) and investigate a possible
impact of this on the hardness of generated formulae.

We are also planning to apply the approach presented here to other crypto-
graphic functions (not only the hash functions). For instance, the cryptographic
algorithm des also falls into a category of transformations that can be encoded
into propositional formulae by the methodology we propose in this paper.

7 Conclusions

In this paper we presented a novel approach for uniform encoding of hash func-
tions (but also other cryptographic functions) into propositional logic formulae.
The approach is general, elegant, and does not require any human expertise
on the construction of a specific cryptographic function. The approach is based
on the operator overloading feature of the C++ programming language and it
uses existing C implementations of cryptographic functions (and needs to al-
ter them only very slightly). By using this approach, we developed a technique
for generating hard and satisfiable propositional formulae and hard and unsat-
isfiable propositional formulae. Using this technique, one can finely tune the
hardness of generated formulae. This can be very important for different ap-
plications, including testing (complete or incomplete) sat solvers. The uniform
logical analysis of cryptographic functions can be used for comparison between
different functions and can expose weaknesses of some of them (as shown for
md4 in comparison with md5). We are planning to further develop and apply
the technique presented in this paper.
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