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Abstract. Inconsistent code is an important class of program abnor-
malities that appears in real-world code bases and often reveals serious
bugs. A piece of code is inconsistent if it is not part of any safely ter-
minating execution. Existing approaches to inconsistent code detection
scale to programs with millions of lines of code, and have lead to patches
in applications like the web-server Tomcat or the Linux kernel. However,
the ability of existing tools to detect inconsistencies is limited by gross
over-approximation of looping control-flow. We present a novel approach
to inconsistent code detection that can reason about programs with loops
without compromising precision. To that end, by leveraging recent ad-
vances in software model checking and Horn clause solving, we demon-
strate how to encode the problem as a sequence of Horn clauses queries
enabling us to detect inconsistencies that were previously unattainable.

1 Introduction

Static analysis techniques can be insufficient to eliminate all false alarms in
large-code bases. In an effort to build static analyzers that report close to zero
false alarms, we have seen an increasing interest in inconsistent code detection.
Broadly speaking, inconsistent code comprises code where two program loca-
tions make contradicting assumptions about the execution of the program. This
includes, for example, checking if a chunk of memory is properly allocated only
after it has already been dereferenced, or accessing an array at an index that is
guaranteed to be out of bounds.

Formally, inconsistent code is defined as a program location that only occurs
on executions that must reach an error state. In other words, a code fragment is
said to be inconsistent if it is never part of a “normal” execution of the program.
For example, unreachable code is inconsistent because it has no execution. Pre-
vious techniques have demonstrated that inconsistent code is a very practical
methodology to find likely bugs in a scalable fashion. For example, in [11] incon-
sistent code is used to reveal bugs in the Linux kernel, and in [27] the authors
found inconsistent code in the web-server Tomcat and the project management
Maven.

? This material is based upon work supported by the National Science Foundation un-
der Grant No. 1422705, AFRL contract No. FA8750-15-C-0010, and NASA contract
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Inconsistent code detection algorithms (e.g., [11,18,22,27,34]) share the same
basic architecture. They analyze a program one procedure at a time. For each
procedure, they over-approximate the feasible executions and try to enumerate
the feasible control-flow paths. Everything that cannot be covered is provably
inconsistent code.

So far, all implementations that detect inconsistent code or subsets of it use
very coarse abstractions to handle looping control-flow which limits their ability
to detect inconsistencies significantly. All of these approaches over-approximate
the effect of loops, by simply replacing them with non-deterministic assignments
to the variables modified inside the loop body. Some of the approaches addi-
tionally add an unwinding of the last loop iteration (to detect typical off-by-one
errors).

In this paper, we present a novel algorithm to detect inconsistent code that
is able to reason more effectively about looping control-flow. To that end, we
follow the recent trend and reformulate the problem of detecting inconsistencies
as a problem of solving a system of constrained Horn clauses (CHC). Instead of
unwinding looping control-flow, we allow for recursive Horn clause definitions.
As in previous approaches that detect inconsistencies, we encode programs into
logic such that a model for this Horn clause system can be mapped to a feasible
control-flow path in the program, but, unlike existing approaches, our encoding
does not require loop elimination.

Each time we find such a feasible path, we block it and check for the existence
of another model that exercises a different control-flow path. However, since our
Horn clause definitions may be recursive, enumerating all feasible path may not
be possible as there may be infinitely many. For this case, we make use of the
recent developments in software model checking for solving Horn clause systems
which may be able to prove unsatisfiability by inferring local invariants using,
for example, property-directed reachability (PDR)/IC3 [7]. For cases where such
a proof exists, our analysis can find inconsistencies that existing tools could not
find. For cases where such a proof does not exist, we can still fall back to previous
approaches by abstracting the looping control-flow.

As a side effect, the invariants produced by our Horn clause solver can be used
to implement existing fault localization techniques for inconsistent code [32].

We evaluate our approach on a set of handcrafted problems which we made
available on-line. In our experiments, our approach only times out in a single
case and finds several inconsistencies that cannot be detected with current tools
that checks for inconsistency.

2 Related Work

The idea that code inconsistencies represent an interesting class of possible de-
fects goes back to Engler et al. [11]. Their technique to detect inconsistencies was
mostly based on syntactic comparison but it is already able to find bugs in the
Linux kernel and other major pieces of software. The work by Dillig et al. [10]
uses the term semantic inconsistencies to refer to contradicting assumptions on
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control-flow paths. While their work also detects inconsistencies as defined by
Engler et al., they also include inconsistencies on individual paths (even though
each statement on these paths might have a feasible execution). That is, they
scan for a larger class of errors but introduce possible false alarms as they cannot
guarantee that the inconsistent paths they report are in fact feasible in a larger
context.

The idea of using deductive verification to prove inconsistencies has been
presented in [22], [34], and [18]. Janota et al. [22] use a variation of the Boogie
tool [2] to verify that code is unreachable in an annotated program. This is
only a subset of inconsistent code, but the detection algorithm could easily be
extended to detect inconsistent code. Hoenicke et al. [18] prove the existence of
inconsistent code but use the term doomed program points. Tomb et al. [34] use
a very similar approach and also give a definition of inconsistent code that we
are going to reuse in this paper. In our earlier work, we have developed a tool
to detect inconsistent code [27] and demonstrated that it finds relevant bugs in
popular open-source Java applications.

In [6], the authors use inconsistency detection to prioritize error messages
produced by a static analyzer. Their approach post-processes static analysis
warnings and gives them a high priority if the warning contains an abstract
semantic inconsistency bug, which is inconsistent code on an abstract model of
the code.

An approach that is similar in spirit but not immediately related is the
work by Wang et al. [35] where the authors try to identify local invariants to
detect undefined behavior of C programs. While the class of errors that we want
to detect are not immediately comparable, we share the idea of searching for
invariants to prove the presence of errors while accepting false negatives in return
for a low false positive rate.

The local invariants computed by our approach when proving code to be
inconsistent can be seen as error invariants [12] which can be used for fault
localization. The approach presented in [32] shows how these invariants can be
used to explain inconsistent code.

Constraint Horn clauses have been used as the basis for software model check-
ing [9,13] of concurrent systems and its use in software verification tools is rapidly
growing. For example, they have been adopted in Threader [29], UFO [1], Sea-
Horn [16], HSF [14], VeriMAP [8], Eldarica [31], and TRACER [21]. Our tool
has many similarities with some of these tools and in fact, our current imple-
mentation is built on the top of SeaHorn. However, ours is the first available
implementation based on Horn clauses that detects inconsistent code.

3 Running Example

We illustrate the different steps of our approach along the running code example
in Figure 1. The procedure foo takes an integer x as input and computes the
sum of 10/i, for all i between -x and x. That is, for any x less or equal to
zero, the procedure skips the loop and returns 0 immediately. For any x greater
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zero, however, the procedure will perform a division by zero once the iterator i
becomes zero resulting in undefined behavior. Executing this undefined behavior
causes the program to terminate with an exception (when compiled with gcc).
Since the loop is iterating from -x to x, any execution that enters the loop
must raise this exception. Hence, line 4 is inconsistent code. We acknowledge
that this is a fairly artificial example but it is designed so that its Horn clause
representation and the invariants used to prove the inconsistency are succinct
for presentation reasons.

1 int foo(int x) {

2 int ret = 0;

3 for (int i=-x; i<x; i++) {

4 ret += 10/i;

5 }

6 return ret;

7 }

Fig. 1. Illustrative example. The procedure foo takes an integer x as input and sums
up the integer divisions 10/i for all i between −x and x. For any x > 0, the division in
line 4 must raise an exception once the iterator i becomes zero. For any x ≤ 0, line 4
cannot be reached.

Let us quickly discuss the concepts of reachability, feasibility, and inconsis-
tency using this example. Every line in this procedure is (forward) reachable,
meaning that, for each statement of the procedure, we can find a sequence of
statements that reaches it from the entry of the procedure and is feasible. That
is, assuming that x can take arbitrary values, there exist a concrete value for
x that triggers an execution ending in the statement. If, on the other hand, we
would assume that x ≤ 0, then the body of the for-loop would not have any
feasible executions and would thus be unreachable. However, every feasible exe-
cution of line 4 must terminate exceptionally later due to unavoidable division
by 0. Hence, we declare line 4 as inconsistent because any feasible execution
containing this line must terminate exceptionally.

Now, we want to use formal techniques to prove the inconsistency in line 4. In
the literature one finds several algorithms that (among other things) prove the
existence of inconsistencies (e.g, [10, 18, 22, 34]). However, none of the existing
algorithms would be able to detect the inconsistency because of their inability to
handle looping control-flow. Unwinding the loop is not an option either in this
example because the bounds are unknown at compile time. Even though each
unwinding would reveal the error, this is not sufficient to prove the inconsistency
(because, for the statement to be inconsistent, the error has to occur on every
iteration). Hence, we need an approach that is able to infer an inductive invariant
that allows us to prove that every feasible execution containing line 4 must
terminate exceptionally.
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In the following sections, we first describe how we encode the running example
from Figure 1 as a system of constrained Horn clauses and then we present an
algorithm to prove that line 4 is in fact inconsistent.

4 Horn Clause Encoding

In this section, we describe how we encode the example from Figure 1, as a
system of constrained Horn clauses. First, we describe the syntax and semantics
of Horn clauses.

Given a set F of function symbols (e.g., +, =, etc), a set P of predicate
symbols, and a set V of variables, a Constrained Horn Clause (CHC) is a formula:

∀V.(p[X]← φ ∧ p1[X1] ∧ . . . ∧ pk[Xk])

for k ≥ 0, where φ is a constraint over F and V. Each pi[Xi] is the application
of a predicate pi ∈ P for first-order terms constructed from F and V. We refer
to the left-hand side of the implication as head and to the right-hand side as
the body of the Horn clause. A clause is called a query if its head is P-free, and
otherwise, it is called a rule. We say a clause is linear if its body contains at
most one predicate symbol P, otherwise, it is called non-linear. For scalability
reasons, our algorithm, described in Section 6, for detecting inconsistencies is
intra-procedural. As a result, all of our CHCs will be linear4. Finally, we will fol-
low the CLP convention of writing Horn clauses as h[X]← φ, p1[X1], . . . , pk[Xk].

A system of CHCs is satisfiable if there exists an interpretation J of the
predicate symbols P such that each constraint φ is true under J . If satisfiable,
we assume that the CHC solver (e.g., GPDR [17], Eldarica [31], or Spacer [25])
also returns a model : assignments of values to variables.

We assume that the reader is familiar with the basic concepts of how to en-
code programs using Horn clauses (see e.g., [5,16,30] for details). For simplicity,
we use in this presentation an encoding based on small-step operational seman-
tics [28] and describe informally how to translate programs to CHCs. Note that
our approach is not limited to a particular encoding and we can also use other
encodings, for instance, large-step [4,15] (a.k.a. Large Block Encoding, or LBE).

Thinking in terms of programs and basic blocks (sequence of statements
without branching), the predicates p1 . . . pk encode the control-location where a
program could have been before reaching the current basic block. The constraint
φ encodes the transition relation of the statements in this basic block, and the
predicate p in the head of the Horn clause indicates where control flows if the
transition relation φ allows for a feasible execution of the basic block.

Figure 2 shows a CHC encoding of our running example from Figure 1.
Each predicate p0, . . . , p4 corresponds to a control location in our program. The
predicate p0 in the first line is the procedure entry encoding that the entry of

4 In presence of function calls, a CHC will have at least two predicate symbols in its
body: one that represents the callee and the other modelling the successor. If callsites
are ignored then CHCs will have only one predicate symbol modelling the successor.
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p0(x, ret, i)← true.

p1(x, ret′, i′)← ret′ = 0 ∧ i′ = −x ∧ p0(x, i, ret). procedure entry

p2(x, ret, i)← i < x ∧ p1(x, ret, i). loop conditional

p3(x, ret, i)← i ≥ x ∧ p1(x, ret, i).

p1(x, ret′, i′)← i 6= 0 ∧ ret′ = 10/i ∧ i′ = i + 1 ∧ p2(x, ret, i). loop body

p4(x, ret, i)← p3(x, ret, i). procedure return

Fig. 2. Constrained Horn clause representation of the example from Figure 1. The
i 6= 0 colored in red is the implicit runtime assertion introduced by the division in
line 4 of our running example.

the function is always reachable. The second line states that if we are at the
procedure entry p0 and ret′ = 0 and i′ = −x can be established, we are allowed
to proceed to the loop head p1. The next two lines state that, if we are at the
loop head and the loop condition i < x holds, we proceed into the loop body p2,
or otherwise, we go to the loop exit p3. The next line represents the loop body.
Note the i 6= 0 colored in red. This is the implicit run-time assertion that needs
to hold when executing the division in the loop body of our running example
in Figure 1. We assume that these assertions have been introduced during the
translation. If the loop body is executed successfully, control moves back to the
loop head p1. The last line is the loop exit. For brevity, we do not model the
return statement and just assume that ret is visible to the outside.

Once obtained the system of constrained Horn clauses representing a pro-
gram, we can add a query. A typical query for our example from Figure 2 would
be:

p4(x, ret, i) (1)

which checks if the control location associated p4 at the end of the procedure is
reachable. If this query is satisfiable, the CHC solver produces a model. For our
encoding, a model also encodes a program state, and the existence of this state
witnesses that there is a feasible path reaching the associated control-location.
For short: if a model for p4 exists then foo has a feasible complete path.

If no such model exists, the CHC solver provides a proof that the program
has no feasible execution (that reaches the end of foo). For our example, we
can find a model that sets x to a value less or equal to zero. For this input, the
execution of the procedure skips the loop and terminates normally.

The challenge now is, how do we check if there is another model that executes
a different path? Let us assume that our previous query provided us with a path
through p0, p1, p3, and p4. Now we want to check if there is also a path through
p2. It would be tempting to build the following query

p4(x, ret, i) ∧ p2(x, ret, i). (2)
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p0(x, ret, i,>,⊥,⊥,⊥,⊥)← true.

p1(x, ret′, i′, r0,>, r2, r3, r4)← ret′ = 0 ∧ i′ = −x ∧ p0(x, i, ret, r0, r1, r2, r3, r4).

p2(x, ret, i, r0, r1,>, r3, r4)← i < x ∧ p1(x, ret, i, r0, r1, r2, r3, r4).

p3(x, ret, i, r0, r1, r2,>, r4)← i ≥ x ∧ p1(x, ret, i, r0, r1, r2, r3, r4).

p1(x, ret′, i′, r0,>, r2, r3, r4)← i 6= 0 ∧ ret′ = 10/i ∧ i′ = i + 1

∧ p2(x, ret, i, r0, r1, r2, r3, r4).

p4(x, ret, i, r0, r1, r2, r3,>)← p3(x, ret, i, r0, r1, r2, r3, r4).

Fig. 3. Constrained Horn clause representation of the example from Figure 1 with
crumb variables. Each crumb variable ri corresponds the a program location associated
with the predicate pi. In the head of each clause, we can see that the crumb variable
for that predicate is set to true (>) which corresponds to updating the variable to >
when the location is reached. For p0 all the crumb variables are set to false (⊥) except
the one that corresponds to the entry of the procedure (r0).

Unfortunately, this query does not ask for a path that passes through p2 and
p4. Instead, it asks whether p2 and p4 are reachable (not necessarly on the same
execution) with the same values for x, ret, and i. Even if we rename the variables
of p2 and p4 to disjoint sets of variables the same problem remains. The reason
is that our Horn clause encoding allows only for checking forward reachability.
However, our aim is to check if a particular location can be passed during an
execution that reaches the end of a procedure. Hence, we have to extend our
encoding to capture which locations have been visited on a path.

5 Crumb Variables

To extend our encoding in a way that allows us to extract a feasible path directly
from the model returned by the Horn clause solver while blocking paths that we
have already covered, we add auxiliary Boolean variables to our encoding. Our
approach is inspired by a similar approach using Integer variables that has been
presented in [3]. Thinking in terms of programs and executions, the idea is to add
one Boolean variable ri per control location (i.e., per predicate pi in the Horn
clause system). All these variables are initially set to false. If a control location is
reached, the corresponding Boolean variable is set to true. Now, we can obtain a
path from a model by looking at the values of these Boolean variables at the last
program location. Throughout the rest of this paper, we refer to these variables
as crumb variables because we disperse them in the encoding so that the Horn
clause solver can find a path while constructing a model.

Figure 3 shows how we encode the procedure foo from our running example
into another system of Horn clauses. For each predicate p0 . . . p4 we introduced
a crumb variable r0, . . . r4. In the head of each Horn clause, we enforce that the
crumb variable ri is set to true when transferring control to pi (alternatively,
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we could update ri in the body of the Horn clause like a proper assignment, but
this representation is shorter).

Note that, in practice, we do not need one crumb variable per location. It is
sufficient to add crumb variables for the minimal subset of locations that need
to be covered to ensure that all locations can be covered (in our example this
would be p2 and p3). The definition of this minimal set is given in [3].

For example, using crumb variables, the incorrect query from (2) in previous
section, is encoded correctly as follows:

p4(x, ret, i,>, r1,>, r3,>) (3)

That is we are asking if it is possible to reach the end of the procedure (by
enforcing that p4 has to hold) in a state where r0, r2, and r4 have been set to
true. Thus, we only allow models representing executions of complete paths that
visit p2 at least once.

Lemma 1. Given a system of CHCs for a program P with a set of predicates
p0 . . . pn and a set of crumb variables r0 . . . rn, and pi(

−→v , r0, . . . , rn), where −→v
is a vector of program variables. A query pi(

−→v , r0, . . . , rn) has a model m if and
only if there exists a feasible path in P that reaches the control location associated
with pi. Further m(ri) is true for all ri associated with control-locations on this
path.

From Lemma 1 follows that querying the predicate that represents the exit
of a program allows us to check for the existence of a feasible path. Further, by
adding additional conjuncts to the query that certain crumb variables have to
be true, we can check if a feasible path through certain locations exists.

Also note that, unlike in encodings that eliminate loops, a model m encodes
paths with loops (that is a path rather than a walk in terms of graph theory).
Hence, if m(ri) is true we know that there exists a feasible path through pi, but
we do not know how often pi is visited when executing this path.

A proof of Lemma 1 in the context of programs and control-flow graphs is
given in [3]. Assuming that our Horn clause representation captures the seman-
tics of this control-flow graph as described in [16], this proof also holds for our
Horn clause representation of programs.

Fault Localization. In query (3), we checked for the existence of a feasible path
that passes through the loop body (represented by p2). Since no such path exists,
the query is unsatisfiable and a Horn clause solver will give us an invariant for
each predicate. Such invariants can be used to apply static fault localization
techniques such as [32] or [23].

For our running example, a Horn clause solver would provide us the following
invariants5:

p0(x, ret, i)← true, p1(x, ret, i)← i < 0, p2(x, ret, i)← i < 0,
p3(x, ret, i)← false, p4(x, ret, i)← false

5 For clarity, we have eliminated from the invariants all crumb variables.
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The first statement proofs that the program location p0 is valid. Once we enter
the loop at p1, the invariant i < 0 holds and takes us into the loop body at
p2 where the invariant still holds. Further, for p3 and p4 the invariant is false
meaning that the execution of the program must end once the invariant i < 0
does not hold anymore. This exactly describes the error. If we enter the loop, we
must have a negative i. We can iterate the loop until i becomes zero and then
we crash.

One can think of different ways of presenting this information to a program-
mer. For example, using automaton based representation as described in [32], or
a compressed trace with annotations. In summary, using a Horn clause solver
to detect inconsistent code provides us a fault localization for free. This is a
significant improvement over previous approaches where the fault localization
had to be computed manually.

6 Inconsistency Detection through Horn clause coverage

Using our Horn clause encoding with the crumb variables from the previous sec-
tion, we are able to ask for any location in a program whether it is inconsistent or
not. However, in practice, we want to know if a procedure contains any inconsis-
tencies. Checking each location individually would not be very efficient (see [3]).
Instead, we propose an algorithm that repeatedly asks the solver for a feasible
path and then blocks this path to ensure that, in the next query, the solver will
exercise a different path that visits at least one control location that has not
been visited previously. In a nutshell, we want to compute a path coverage for
the generated system of Horn clauses.

Algorithm 1: Horn clause coverage algorithm.

Input: HC : constrained Horn clause encoding of a program with crumb
variables.

Output: feasible : Crumb that can occur on a feasible path.
1 begin
2 crumbs← getCrumbs(HC) ;
3 psink ← getSink(HC) ;
4 feasible← ∅;
5 blocking ← true ;
6 while query(psink ∧ blocking) do
7 model← getModel(psink) ;
8 blocking ← blocking ∧ getBlockingClause(model);
9 feasible← feasible ∪ {r|r ∈ crumbs ∧ model(r)};

10 end while
11 return feasible;

12 end
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Algorithm 1 shows our covering algorithm for Horn clause systems. The al-
gorithm takes a program encoded as system of constrained Horn clauses HC
augmented with crumb variables as input and returns the set of crumb variables
feasible that occurred on feasible paths. To that end, the algorithm first uses
the helper function getCrumbs to collect all crumb variables from the input Horn
clauses. Then, the algorithm calls getSink to get the predicate associated with
the last control location psink in the program encoded by HC. This location
is needed later on to query if there exists a feasible complete path (that is a
path reaching psink). Further, the algorithm uses the helper variable blocking,
which is initially true to exclude all models representing program paths that have
already been visited.

The main loop of Algorithm 1 repeatedly checks if psink in conjunction with
the blocking clause blocking has a model. It uses the helper function query

which either returns true or false (or runs forever). If query returns false, we
have a proof from the solver that no feasible path exists and we return the set
feasible. If query returns true, we use the helper function getModel to obtain a
model from the solver that assigns each variable in psink to a value. In particular,
model contains an assignment for each crumb variable r such that set of crumb
variables assigned to true represent a feasible path.

Using the model obtained from the solver, we now extend our blocking clause
blocking to exclude the feasible path represented by model. To that end, we use
the function getBlockingClause which constructs a conjunction of all crumb
variables where the variables that are assigned to false in model occur in negated
form, and the ones assigned to true in positive form:

getBlockingClause(model) = ¬
( ∧

r∈getCrumbs(HC)

{
r if model(r) = true
¬r if model(r) = false

)
One important difference between computing such a blocking clause for Horn
clause systems with loops compared to Horn clause systems without loops is
that our blocking clause also must include conjunctions for the crumb variables
that are assigned to false in the model. If we would only include those crumb
variables set to true by the model, we would also block all paths that visit a
superset of the locations visited on this path. Think, for example, of a program
containing a single loop with one conditional choice in its body. Let us further
assume the then-branch must be visited in the first iteration of the loop, and the
else-branch must be visited in all other iterations. If our Horn clause solver gives
us a model in which the then-branch is visited but not the else-branch, and we
would add a blocking clauses containing only the crumb variables that are true
in model, we would also block all feasible paths through the else-branch. This is
because any path through the else-branch must go through the then-branch in
the first iteration of the loop. Hence it must set all crumb variables to true that
are true in model and, in addition to that, the crumb variable for the else-branch.

After updating our blocking clause, Algorithm 1 adds all crumb variables
assigned to true by model to the set feasible. This loop is iterated until no new
model can be found. Then, the algorithm returns the set feasible of all crumb
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variables which correspond to feasible control locations in the program. All other
control locations in the program are inconsistent.

Note that Algorithm 1 is guaranteed to terminate if query terminates: each
iteration of the loop extends the blocking clause in a way that the next iteration
has to visit at least one new control location. Since the number of control loca-
tions is finite (even if the number of paths is not), the loop must reach a point
where all control locations that occur on feasible paths have been visited. Then
it is up to query to prove that there is no more feasible path (this, however, is
undecidable).

Remarks on soundness and completeness. Since finding inconsistent code is not
safety checking, let us briefly clarify what soundness means in the context of
inconsistent code detection: An inconsistent code detection algorithm is sound,
if every inconsistency reported in HC is in fact an inconsistency in the program
it encodes (i.e., a proof that no feasible paths through a control location exists in
the Horn clause encoding also is a proof that no such path exists in the original
program). So, to be sound, our Horn clause encoding must over-approximate
the feasible executions of the original program (which is usually easier than
over-approximating the failing executions which is needed to prove safety). Our
implementation for C is not sound as we will discuss later. Further, our algorithm
is only sound if our Horn clause solver is sound. That is, Algorithm 1 does
not introduce unsoundness, but our implementation used in the evaluation is
unsound.

Completeness in the context of inconsistent code detection means that an
algorithm detects all inconsistencies. Our algorithm is complete if the employed
Horn clause solver is complete - which is not the case since the problem is
undecidable. Further, we lose completeness during the translation into Horn
because we cannot guarantee that the translation preserves all feasible executions
of the original program which we will discuss later.

7 Experimental Evaluation

We have implemented our technique on top of the SeaHorn framework [16]. Our
tool uses SeaHorn capabilities for translating LLVM-based programs into a set of
recursive Horn clauses. This saved us a huge amount of work since SeaHorn deals
with the translation from C to LLVM bitecode, performs LLVM optimizations
and runs some useful transformations (e.g. mixed-semantics transformation) as
well as a pointer analysis. This also allowed us to support programs with pointers
and arrays without extra effort. We implemented a variant of the small-step
encoding in order to accommodate the crumb variables. We leave for future
work the extension to more efficient encoding such as Large-Block Encoding
(LBE).

We have implemented the algorithm described in Section 6 in Python. The
code that is publicly available at [33]. The algorithm is applied on each function
separately rather than the whole program. Although our prototype analyzes sev-
eral functions concurrently one important limitation is that it generates the Horn



12 Temesghen Kahsai, Jorge A. Navas, Dejan Jovanović, Martin Schäf

Benchmark Inconsistency detected # iterations

with loops time (sec) with abstraction time (sec)

example 1 3 0.09 7 0.045 1
example 2 3 0.065 3 0.06 2
example 3 3 5.78 3 5.78 33
example 4 7 TIMEOUT 7 0.22 ?
example 5 3 0.33 7 0.03 3
example 6 3 0.04 3 0.085 1
example 7 3 0.12 7 0.09 3
example 8 3 2.956 3 0.085 5
example 9 3 0.01 3 0.02 1
example 10 3 3.66 7 1.15 4
example 11 3 7.91 7 0.08 2
example 12 3 44.64 7 0.14 2
example 13 7 0.33 7 0.03 2

Table 1. Results of applying our inconsistent code detection on a set of benchmarks.
The benchmarks are handcrafted in the spirit of SV-COMP benchmarks challenge
the algorithm with different categories of loops. We check for each benchmark if the
inconsistency can be detected by our approach (with loops) and by an approach where
loops are abstracted (with abstraction). We further record the number of iterations of
our algorithm (i.e., number of feasible paths) and the computation time.

clauses for the whole program. This has limited us significantly with real appli-
cations. For future work, we will instead generate Horn clauses for each function.
For this purpose we will still need a scalable and precise pointer analysis that
can analyze the whole program in presence of pointers and arrays. Fortunately,
SeaHorn relies on a heap analysis called Data Structure Analysis (DSA) which
has been very effective for real applications [26].

Experimental setup. To evaluate our approach we handcraft a set of benchmark
problems. The idea is to create a set of small but hard benchmarks in the spirit
of what is being used in the software verification competition that will allow
us to compare different Horn clause solving strategies in the future. All our
benchmarks are available online6 and contain different kinds of inconsistencies
which we will describe below in more detail.

For the experiments we used SeaHorn running Spacer [24] in the backend
to solve the generated CHCs. All experiments are run on a Macbook Pro with
2.4Ghz and 8 GB or memory.

Discussion. Table 1 shows the results of running our tool on the set of hand-
crafted benchmarks. The first column shows the name of our benchmark, the
second column shows a 3 if our tool detects the inconsistency in the benchmark,
and a 7 if it fails to do so.

All examples contain inconsistent code. Example 1 is our running example.
The other examples represent different challenging problems for Horn clause

6 https://github.com/seahorn/seahorn/tree/inconsistency/play/inconsistency
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solvers. The examples 2 and 3 do not contain loops, and hence can be solved by
approaches that abstract loops. The examples 6, 8, 9, and 10 are taken from [20],
a Wikipedia list of common loop errors, and [27]. They represent cases where
inconsistencies in code can be found even with abstraction. Example 6 is an
inconsistency that must happen in the first iteration of the loop. For 8 and 9,
the inconsistency is local to the loop body and thus can be detected without
considering the loop. Example 10 is a typical off-by-one error that can still be
detected using, e.g., the loop abstraction in [19] or [34].

Our approach fails on the examples 4, and 13. Example 4 is a faulty imple-
mentation of binary search that sets the mid point in a way that leads to an
endless loop. Our Horn clause solver is not able to infer a suitable invariant to
prove this and infinitely unwinds the loop. Example 13 contains two loops. The
first loop allocates a two dimensional matrix but erroneously iterates over the
wrong variable which results in unallocated fields in the matrix. The second loop
assigns all fields leading to an inevitable segmentation fault. SeaHorn currently
does not check if memory is allocated, hence we cannot find this inconsistency.

For all other examples, our approach is able to find inductive invariants that
are sufficient to prove the existence of the inconsistency. That is, our approach
only times out on a single example and is able to identify six instances of incon-
sistent code that went undetected before. Hence, we believe that our approach of
using CHCs to detect inconsistencies is viable in practice (in particular because
we can always fall back to abstraction-based approaches in case of a timeout).

Comparing the computation time of our approach with inconsistent code
detection that abstracts loops shows that our approach is not significantly slower
on examples that can be solved by both, and sometimes even faster. On examples
that can only be solved by our approach, the overhead is sometimes significant
(e.g., 8, 11, and 12) but we believe that there is still room for improvement.

Threats to Validity. We report on several threats to validity. Our internal validity
is affected by choosing SeaHorn as a frontend to translate C into CHCs, and by
using Spacer as a backend to solve those CHCs. Using different frontends or
backends may give completely different results. However, we do not claim that
our setup is more effective than others. In fact, we encourage readers to try
other setups that outperform our approach. The other obvious internal threat to
validity is selection bias. We cannot guarantee that our handcrafted benchmarks
resemble real inconsistencies. However, we believe that, as a first step, these
experiments are sufficient to motivate that inconsistent code detection in the
presence loops is an interesting problem, and that our benchmark programs can
serve as a baseline for researchers.

A threat to external validity (i.e., generalizibility of the results) for any incon-
sistent code detection algorithm is that we cannot quantify the number of false
negatives (because it is undecidable). Hence, we cannot quantify how much bet-
ter our approach performs at finding inconsistencies than previous approaches.
However, by design, we can say that it finds at least the same inconsistencies as
previous approaches and maybe more. A suitable way to evaluate this would be
by injecting inconsistencies into real code. However, there is no related empirical
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work on how realistic inconsistencies can be injected into code. Another way to
reduce the threat to external validity is to run our tool on industrial benchmarks.

8 Conclusion

In this paper, we have presented a novel approach to detect inconsistent code
in the presence of looping control-flow. Our approach encodes the problem of
detecting inconsistent code into the problem of solving a system of constrained
Horn clauses. Unlike existing approaches, we do not need to abstract looping
control-flow in a preprocessing step. Hence, our ability to detect inconsistencies
is only limited by the employed Horn clause solver. This allows us to detect
a larger class of inconsistencies than any existing techniques. Moreover, this
represents an interesting novel application of Horn clause solving.

We propose a set of benchmark programs containing inconsistent code that
we made available online. Our experiments show that our implementation is able
to detect several inconsistencies in these programs that could not be detected
by other tools at a reasonable overhead. In particular, we can always fall back
to abstraction-based approaches if our technique does not converge. In fact, to
achieve better scalability we envision a technique that integrates our method
with abstraction-based approaches. In the future we also plan to validate our
approach to industrial scale code base.
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